Криволинейные и поверхностные интегралы

Криволинейные интегралы первого рода, их свойства и вычисление. Условия независимости криволинейного интеграла 2-го рода от пути интегрирования. Связь поверхностных интегралов первого и второго рода. Формула Гаусса-Остроградского и формула Стокса.

Подобные документы

  • Интегральная сумма для криволинейного интеграла. Порядок ее вычисления путем замены в подынтегральном выражении переменных Х и У через параметр, представление дифференциала дуги dS как функции параметра. Примеры вычисления криволинейных интегралов.

    презентация, добавлен 17.09.2013

  • Основные определения, понятия, свойства криволинейного интеграла. Определение массы кривой с переменной линейной плотностью. Расчет площади цилиндрической поверхности. Притяжение материальной точки материальной кривой. Вычисление длины всей кривой.

    курсовая работа, добавлен 21.09.2015

  • Выявление статистической значимости и обоснованности; гипотезы и их проверка. Ошибки первого и второго рода в математической статистике. Вероятности ошибок (уровень значимости и мощность), их использование в области компьютеров и программного обеспечения.

    реферат, добавлен 30.12.2021

  • Вычисление площади плоской фигуры с применением определенного интеграла. Определение объема тела вращения при помощи геометрических расчетов. Понятие и признаки несобственного интеграла. Несобственные интегралы с бесконечными пределами интегрирования.

    лекция, добавлен 03.04.2019

  • Понятие определенного, двойного и тройного интегралов. Характеристика теорем существования двойного и тройного интегралов. Сущность теоремы о среднем значении для двойного интеграла. Условия перехода пределов интегрирования к полярным координатам.

    контрольная работа, добавлен 27.08.2013

  • Квадратурная формула Ньютона-Котеса, ее характеристика и частные случаи. Анализ квадратурной формулы Гаусса. Приближенное вычисление несобственных интегралов. Кубатурные формулы типа Симпсона как метод приближенного вычисления двойного интеграла.

    лекция, добавлен 26.09.2017

  • Основные приемы и методы вычисления неопределенных интегралов. Свойства интеграла, правила интегрирования. Простейшие приемы вычисления. Интегрирование методом замены переменной, по частям. Интегрирование рациональных выражений и трансцендентных функций.

    учебное пособие, добавлен 08.09.2011

  • Сущность формулы Грина как установления связи между криволинейным интегралом по координатам, вычисленным по замкнутому контуру и двойным интегралом по области. Характеристика условий независимости криволинейного интеграла от пути интегрирования.

    лекция, добавлен 17.01.2014

  • Несобственный интеграл с бесконечными пределами интегрирования, его вычисление. Признаки сравнения несобственных интегралов от неограниченных функций. Следствие аксиомы о сходимости интеграла с большей подынтегральной функцией, исследование примеров.

    презентация, добавлен 25.09.2017

  • Определение бета- и гамма-функций с помощью интегралов Эйлера соответственно первого и второго рода, их применение для вычисления интегралов по формуле Стерлинга. Рассмотрение неполных гамма-функций (функции Прима). Примеры вычислений интегралов.

    курсовая работа, добавлен 01.11.2010

  • Понятие и свойства неопределенного интеграла. Замена переменных. Интегрирование рациональных функций. Метод рационализации. Сущность метода интегрирования по частям. Таблица простейших неопределенных интегралов. Упрощение подынтегральной функции.

    реферат, добавлен 17.01.2011

  • Скалярные и векторные поля. Циркуляция векторного поля вдоль кривой. Формула Гаусса-Остроградского, дивергенция. Формула Стокса, ротор векторного поля. Потенциальное поле и его свойства. Соленоидальное поле и его свойства. Расчет векторного потенциала.

    курсовая работа, добавлен 24.03.2009

  • Изучение видов определенного и несобственного интегралов, анализ их актуальности использования в математике. Выведение формулы Валлиса, ее применение для интеграла Эйлера-Пуассона. Способ получения формулы Тейлора с остаточным членом в интегральной форме.

    курсовая работа, добавлен 21.01.2010

  • Понятие и общая характеристика неопределенного интеграла, его основные свойства и функции. Сущность и особенности рациональной дроби, порядок и принципы ее интегрирования. Сходимость несобственных интегралов II рода. Изучение дифференциальных уравнений.

    лекция, добавлен 02.05.2012

  • Пример нахождения неопределенного и определенного интегралов, использование основных формул. Вычисление несобственного интеграла, доказательство его расходимости. Приложения определенного интеграла. Изменение порядка интегрирования в двойном интеграле.

    учебное пособие, добавлен 24.08.2012

  • Нахождение определенных интегралов от функций, первообразные которых не выражаются через элементарные функции. Вывод приближенных формул вычисления определенных интегралов. Формула трапеций и формула парабол (Симпсона), абсолютная величина ее погрешности.

    реферат, добавлен 08.03.2010

  • Понятие и фундаментальные свойства осевой симметрии. Правила тождественного преобразования в пространстве относительно неподвижной прямой. Движение первого рода как отображение плоскости на себя. Формула определения расстояния между двумя точками.

    презентация, добавлен 25.04.2016

  • Вычисление определенных интегралов с помощью квадратурных формул. Вывод формул численного интегрирования с использованием интерполяционного полинома Лагранжа. Общая формула Симпсона, простейшие квадратурные формулы. Квадратурная формула Чебышева.

    контрольная работа, добавлен 21.12.2010

  • Изучение обратной задачи с интегральной зависимостью. Характеристика условно-корректного разрозненного уравнения Вольтерра первого рода. Особенность выполнения принципа Банаха. Единственность и условная устойчивость решения задания в обобщенном смысле.

    статья, добавлен 15.05.2016

  • Построение регуляризирующих операторов для решения интегральных уравнений и систем уравнений Фредгольма первого рода. Доказательство теорем единственности и получение оценки устойчивости для таких уравнений в разных семействах множеств корректностей.

    автореферат, добавлен 23.11.2017

  • Основы линейной, векторной алгебры, аналитической геометрии и математического анализа. Криволинейные и поверхностные интегралы, дифференциальные уравнения, элементы теории поля и теории функций комплексного переменного, основы операционного исчисления.

    курс лекций, добавлен 19.11.2014

  • Построение гамма-функции, отталкиваясь от функционального уравнения. Основные свойства гамма-функции и ее использование (вычисление эйлерова интеграла первого рода, или бета-функции). Асимптотическое поведение гамма-функции и получение формулы Стирлинга.

    курсовая работа, добавлен 22.04.2011

  • Формула Остроградского-Гаусса. Понятие о задачах векторного анализа и теории поля. Определение скалярного поля. Циркуляция векторного поля. Потенциальное векторное поле. Собственные интегралы, зависящие от параметра. Признаки равномерной сходимости.

    курс лекций, добавлен 15.05.2016

  • Численный метод решения интегрального уравнения с ядром, имеющим особенности первого порядка по обеим переменным. Аппроксимация кусочно-линейными функциями. Расчет коэффициентов методом коллокации. Вычисление сингулярных интегралов от базисных функций.

    статья, добавлен 13.05.2017

  • Геометрический смысл интегральной суммы. Свойства верхних и нижних сумм. Лемма Дарбу. Необходимое и достаточное условие интегрируемости. Сущность равномерно непрерывных функций. Объемы тел вращения. Правила интегрирования. Формула прямоугольников.

    реферат, добавлен 17.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.