Анализ и синтез при решении параметрических уравнений

Классификация и характеристика мыслительных процессов. Анализ и синтез как способы познания действительности. Формирование понятий в результате абстрагирования. Способы производства умозаключений. Решение иррационального уравнения и проверка результатов.

Подобные документы

  • Применение аналитических математических методов при моделировании процессов в науке и технике. Решение практических задач по баллистике методами Эйлера, Рунге-Кутта и Адамса. Учёт локальных особенностей искомой функции дифференциального уравнения.

    лекция, добавлен 21.09.2017

  • Особенности отображения и разделения заданного уравнения на элементарные подуравнения. Анализ построения асимптот. Основные аспекты решения уравнений третьей степени. Формула вычисления комплексных корней. Основы проверки правильности записи момента.

    дипломная работа, добавлен 26.03.2015

  • Правила решения систему линейных алгебраических уравнений методом Гаусса и Крамера. Порядок разложения вектора. Формирование уравнения медианы. Вычисление косинуса внутреннего угла треугольника. Расчет угла между ребрами пирамиды и площади грани.

    контрольная работа, добавлен 25.08.2015

  • Решение системы трех линейных уравнений методами Крамера и Гаусса с помощью определителей и преобразования матриц. Вычисление длины ребра, угла между ребрами, площади грани, уравнения плоскости и объёма пирамиды по заданным координатам её вершин.

    контрольная работа, добавлен 22.08.2014

  • Совершенствование методики изучения уравнений как моделей реальных процессов. Теоретические основы математического моделирования, его виды и классификация. Уравнения как математические модели реальных ситуаций. Анализ учебников алгебры 5-9 классов.

    дипломная работа, добавлен 05.07.2014

  • Сравнение решений осредненного и уравнения с быстроосциллирующими коэффициентами для волнового уравнения. Расчет эффективного коэффициента асимптотическим методом осреднения. Обобщенный адиабатический принцип при решении рекуррентной системы уравнений.

    контрольная работа, добавлен 28.08.2016

  • Применение метода простых итераций и метода Ньютона для решения систем нелинейных уравнений. Интерполирование функций с помощью формулы Лагранжа. Способы вычисления однократных интегралов. Решение обыкновенных дифференциальных уравнений и систем.

    учебное пособие, добавлен 18.09.2012

  • Сущность обыкновенных дифференциальных уравнений, описание их общего вида и основные правила решения. Понятие условия Коши, его применение. Роль дифференциальных уравнений в решении прикладных задач. Порядок нахождения уравнения кривой, основные методы.

    курсовая работа, добавлен 25.11.2013

  • Классификация методов решения обыкновенных дифференциальных уравнений. Общие понятия теории многошаговых методов. Явные и неявные формулы Милна. Практические способы оценки погрешности приближенного решения. Автоматический выбор шага интегрирования.

    контрольная работа, добавлен 02.12.2012

  • Решение линейного уравнения Фоккера-Планка, его применение и особенности. Постановка вариационной задачи максимизации информационной энтропии по Клоду Шеннону. Анализ параметров решения уравнения методом моментов, сущность вариационного исчисления.

    дипломная работа, добавлен 14.07.2016

  • Особенности теоретических основ численного решения скалярных (нелинейных) уравнений методом хорд. Нахождение отрезков из области определения функции f (x), внутри которых содержится только один корень решаемого уравнения. Отделение корней уравнения.

    курсовая работа, добавлен 29.11.2015

  • Изучение личности Диофанта и принципов решения диофантовых уравнений. Рассмотрение системы чисел и символов, которые Диофант применял в своих трудах, примеров из сборника его задач, имеющих решение. Решение неопределенных уравнений в рациональных числах.

    реферат, добавлен 26.03.2019

  • Способы оценки погрешности численного решения нелинейных уравнений. Рекуррентная формула, которая используется для получения решения уравнения методом Ньютона. Алгоритм нахождения точки экстремума с использованием методики одномерной оптимизации.

    курсовая работа, добавлен 16.06.2021

  • Решение уравнения по формулам Крамера, с помощью обратной матрицы, методом Гаусса. Приведение уравнения к каноническому виду. Нахождение длин сторон треугольника по координатам его вершин. Нахождение длин и угла между векторами, их запись в системе орт.

    контрольная работа, добавлен 07.03.2016

  • Решение задачи групповой классификации систем линейных дифференциальных уравнений первого порядка с двумя неизвестными функциями двух переменных. Групповая классификация систем дифференциальных уравнений основных подмоделей уравнений газовой динамики.

    автореферат, добавлен 16.02.2018

  • Определение степенной функции y = a(x в степени m), где а и m - постоянные величины. Ход урока: повторение свойств степеней, определение понятий. Построение графиков параболы и гиперболы. Решение уравнений и неравенств. Сравнительный анализ результатов.

    презентация, добавлен 03.03.2012

  • Решение дифференциального уравнения первого порядка методом Рунге-Кутты. Численные методы решения задачи Коши. Практическая оценка погрешности. Однотипные дифференциальные уравнения системы. Коэффициенты при постоянной. Применение правила Рунге.

    лабораторная работа, добавлен 16.06.2014

  • Решение уравнения методом хорд и касательных. Сужение отрезка изоляции корня методом проб. Вычисление комплексных корней уравнения. Построение корней на комплексной плоскости. Запись корней в алгебраической, тригонометрической и показательной формах.

    контрольная работа, добавлен 21.10.2017

  • Решение дифференциального уравнения численным методом. Исправленный и модифицированный метод Эйлера. Значение метода Эйлера. Описание алгоритма главной программы. Сравнение результатов полученных при использовании программы, а также ручным способом.

    контрольная работа, добавлен 20.07.2012

  • Схема проверки параметрических гипотез. Проверка гипотез о параметрах нормального распределения. Рассмотрение критериев Стьюдента для парных выборок. Определение ошибок первого и второго рода. Мощность критериев: односторонняя и двусторонняя альтернатива.

    презентация, добавлен 24.09.2017

  • Понятие неособой точки и способы задания поверхности (параметрический, явный или неявный). Система координатных параметрических уравнений и теорема об обратной функции. Геометрическое определение градиента, формулы Ньютона - Лейбница и Стокса.

    контрольная работа, добавлен 25.03.2011

  • Матрицы и действия над ними. Система n линейных уравнений с n неизвестными. Правило Крамера. Использование метода Гаусса решения общей. Критерий совместности общей. Решение систем линейных уравнений на экзаменах в различных математических вузах.

    реферат, добавлен 02.02.2022

  • Постановка задачи и основные этапы отыскания решения. Погрешности и критерии окончания метода деления отрезка пополам при решении нелинейного уравнения. Применение метода Ньютона, простых итераций, секущих и ложного положения при вычислительном процессе.

    контрольная работа, добавлен 28.03.2015

  • Применение приближенных (численных) способов нахождения корней системы матричных уравнений с большим числом неизвестных. Содержание методов простых итераций, Зейделя, релаксации, используемых в решении уравнений. Теорема сходимости итерационного процесса.

    лекция, добавлен 21.09.2017

  • Определение, расчет и совместность системы линейных уравнений. Варианты решений фундаментальной системы уравнений и вычисление рангов матрицы. Модифицированная матрица и вычетание уравнений из строк. Определение произвольный системы, отличный от нуля.

    контрольная работа, добавлен 21.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.