Экстремальные полиномы в теории итерационных процессов

Практическое применение чебышевских приближений в различных областях математики и инженерных расчетах. Алгоритмы точного и приближенного построения экстремальных полиномов для функций действительного и комплексного аргумента, их модификации и обобщения.

Подобные документы

  • Аналитическая и дифференциальная геометрия. Исследования Гаусса по неевклидовой геометрии. Обобщения теоремы Эйлера о многогранниках. Развитие концепции комплексного числа. Последовательности и ряды аналитических функций. Интегральная теорема Коши.

    книга, добавлен 25.11.2013

  • Анализ идеи системного обобщения понятий математики, в частности теории информации, основанных на теории множеств, заменой понятия множества на содержательное понятие системы. Ее реализация в разработке автоматизированного системно-когнитивного анализа.

    статья, добавлен 25.04.2017

  • Работа с пакетом инженерно-математических программ MathCAD. Основные возможности системы и интерфейс MathCAD 2001. Описание приемов работы с системой MathCad, ее стандартных и пользовательских функций. Индивидуальные задания и анализ их решения.

    курсовая работа, добавлен 15.02.2014

  • Алгебраические операции над комплексными числами и комплексное сопряжение. Показательная функция комплексного аргумента и применение формулы Эйлера. Геометрическая интерпретация комплексных чисел. Разложение многочлена с действительными коэффициентами.

    курс лекций, добавлен 23.10.2013

  • Особенность использования математики в экономических процессах. Изучение специфических математических методов, которые основываются на основных постулатах теории вероятностей. Характеристика разложения функции в бесконечную сумму степенных функций.

    статья, добавлен 27.02.2019

  • Понятие интеграла Лебега от ограниченной функции как обобщения интеграла Римана на более широкий класс функций, его характеристика и свойства, направления исследования и анализа, история построения. Класс интегрируемых по Лебегу ограниченных функций.

    реферат, добавлен 09.04.2013

  • Определение кратчайших путей от вершины до остальных вершин графа, используя алгоритмы Дейкстры и Беллмана. Определение кратчайших путей между всеми парами вершин графа с применением алгоритма Флойда. Программирование алгоритма дискретной математики.

    курсовая работа, добавлен 12.11.2017

  • Теоретические основы постановки и решения инженерных задач. Решение алгебраических и трансцендентных уравнений с одной переменной и систем алгебраических уравнений. Интерполяция, аппроксимация и численное интегрирование табличных и сложных функций.

    монография, добавлен 18.05.2015

  • Процесс получения новой точной оценки наилучшего приближения тригонометрическими полиномами спектром "типа гиперболических крестов" в пространстве Бесова. Использование уже известных оценок и доказанных результатов. Спектр приближающих полиномов.

    статья, добавлен 21.06.2018

  • Определение для сингулярно возмущенного операторного уравнения Фредгольма последовательных итерационных, а также асимптотических приближений. Выбор нулевого приближения. Теорема о биортогонализации. Выбор частного решения неоднородного уравнения.

    статья, добавлен 05.07.2013

  • Изучение истории развития математики - науки о величинах и количествах. Характеристика основных разделов математики: арифметики, элементарной алгебры, геометрии (планиметрии и стереометрии), теории элементарных функций и элементов анализа. Цифры майя.

    реферат, добавлен 10.11.2011

  • Рассмотрение возрастающих и убывающих функций, особенностей поведения функций в точке. Определение функции, непрерывной в каждой точке. Применение понятия предела функции в экономических расчетах. Свойства производной, производные высших порядков.

    реферат, добавлен 13.06.2015

  • Понятие существенной и фиктивной переменной простых булевых функции функций. Суперпозиции и теория множеств. Нормальные формы и полиномы. Определение и характеристика классов Поста. Минимизация нормальных форм всюду определённых булевых функций.

    курсовая работа, добавлен 05.12.2012

  • Биортогональные разложения различных классов функции и их применение в разделах математики. Возникновение необходимости построения биортогональных систем, коэффициенты которых легко выражаются. Условия, обеспечивающие восстановление непрерывной функции.

    статья, добавлен 02.02.2019

  • Сущность и введение мнимой единицы, понятие комплексного аргумента. Особенности алгебраической, тригонометрической и экспоненциальной формы записи комплексного числа. Вычитание, сложение, деление и умножение комплексных чисел, их извлечение из корней.

    презентация, добавлен 16.01.2018

  • Повышение культуры мышления, формирование научного мировоззрения как цель изучения математики. Современное понятие математики. Применение алгебраических структур. Математические модели объектов. Проникновение математики в различные отрасли знаний.

    статья, добавлен 25.07.2018

  • Функции комплексной переменной и их значение. Понятие аналитической функции, дифференцирование первого и других равенств. Анализ функции комплексного аргумента. Основные теоремы о пределе и непрерывности вещественных функций в комплексных случаях.

    реферат, добавлен 22.12.2011

  • Изучение межпредметных связей математики с инженерными дисциплинами. Рассмотрение применения математического моделирования для анализа производственных процессов и их прогнозирования. Формирование знаний основных сведений математической статистики.

    учебное пособие, добавлен 06.04.2014

  • Обоснование непрерывность элементарных функций для точки, у которой малые изменения аргумента приводят к малым изменениям математического значения. Анализ формулы гиперболических значений. Обзор сложной и обратной функций, а так же точек их разрыва.

    лекция, добавлен 29.09.2013

  • Определения и теоремы теории графов, подграфы. Операции над графами и степени их вершин. Цепи, циклы и компоненты. Применение теории графов в школьном курсе математики, в задачах управления дорожным движением, химии, биологии, физике. Графы и информация.

    курсовая работа, добавлен 22.06.2014

  • Построение множества комплексных чисел. Рассмотрение прямоугольной (декартовой) системы координат на плоскости. Операции сложения и умножения с векторами. Комплексные функции действительного аргумента. Вычитание равенств чисел из формулы Эйлера.

    лекция, добавлен 09.07.2015

  • Составные части графа. Использование теории графов при решении задач в экономике. Алгоритмы, предназначенные для выполнения задачи оптимизации. Понятие "жадный алгоритм", его свойства. Применение формул метода Дейкстры для решения экономических задач.

    статья, добавлен 20.04.2019

  • Выделение простых чисел как важная задача математики, основные алгоритмы проверки чисел на простоту. Понятие делимости целых чисел, свойства делимости, алгоритм Евклида. Основные критерии простоты целых чисел, свойства и теоремы из теории сравнений.

    курсовая работа, добавлен 03.05.2014

  • Экономический смысл производной и сущность дифференциального исчисления. Применение производной при решении задач по экономической теории. Использование производной в предельном анализе, описание экономических законов с помощью математических формул.

    презентация, добавлен 16.10.2015

  • Классификация моделей релаксации клики. Алгоритмы нахождения плотных подграфов. Применение теории графов для описания фондового рынка. Реализация алгоритмов и их сравнение. Модифицированный Degree Decomposition Algorithm. GRASP алгоритм поиска квази-клик.

    дипломная работа, добавлен 02.09.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.