Действия с матрицами
Проведение операции сложения над матрицами одного порядка, операции умножения матрицы на число и операции умножения матриц подходящего порядка. Рассмотрение аксиоматических исходных свойств операций. Характеристика приоритета операций над матрицами.
Подобные документы
Понятие, свойства и характеристика основных видов матриц, а именно матрица размера mхn, квадратная, единичная, симметрическая и диагональная. Описание операций по составлению суммы и разности матриц, оценка их результатов. Сущность преобразования подобия.
контрольная работа, добавлен 16.06.2010Аксиомы линейного пространства. Операции сложения и умножения элемента на число. Линейная комбинация векторов с коэффициентами. Определение координат вектора относительно базиса. Разложение элемента по базису. Понятие линейной векторной зависимости.
лекция, добавлен 29.09.2013Виды матриц и операции над ними. Системы линейных алгебраических уравнений. Линейные операции над векторами. Аналитическая геометрия, уравнения плоскости. Кривые второго порядка: эллипс гипербола, парабола. Свойства предела функции, таблица производных.
курс лекций, добавлен 05.01.2016Изучение матриц как инструментов для записи различных математических преобразований. Характеристика метода решения систем линейных уравнений методом Гаусса. Исследование свойства сложения матриц одинакового размера и умножения на действительное число.
лекция, добавлен 15.11.2010Характеристика сущности и свойств матрицы. Анализ специфики ортогональных и унитарных матриц. Изучение детерминант матриц и их свойств. Примеры нахождения определителей N-го порядка. Примеры решения задач на определение видов и детерминант матриц.
курсовая работа, добавлен 31.10.2017- 56. Линейная алгебра
Понятие евклидова пространства. Коллинеарные векторы. Размерность и базис векторного пространства. Операции над матрицами. Линейное преобразование переменных. Теорема о делении с остатком. Понятие квадратичной формы, исчисление ее канонического базиса.
дипломная работа, добавлен 17.01.2011 Действия с линейными операторами. Произведение оператора на число. Результат последовательного применения на вектор-прообраз х в пространстве Х. Изучение характеристического многочлена матрицы. Собственные векторы и числа, системы линейных уравнений.
лекция, добавлен 26.11.2013Основные действия над матрицами. Решение произвольных систем уравнений Крамера и Гаусса. Коллинеарные и компланарные векторы. Кривые второго порядка. Аналитическая геометрия в пространстве. Поверхности вращения. Бесконечно малые функции. Графы и сети.
курс лекций, добавлен 05.03.2016Невырожденные матрицы второго порядка. Теорема о разложении матрицы в линейную комбинацию ее сопряжённых корней. Условие идемпотентности квадратных матриц второго порядка. Нелинейные системы уравнений второго порядка, задаваемые матричными уравнениями.
научная работа, добавлен 04.05.2012- 60. Матрица
Матрица как прямоугольная таблица, состоящая из чисел, расположенных в m строках и n столбцах. Виды матриц и их краткая характеристика. основные действия над матрицами. Операция над матрицей, когда ее строки становятся столбцами с теми же номерами.
презентация, добавлен 09.11.2020 История появления таблицы умножения. Роль таблицы умножения в жизни человека. Проблемы в заучивании таблицы умножения. Определение технологии уменьшения вопросов. Нетрадиционные способы заучивания. Помощь знаний таблицы умножения человеку в будущем.
контрольная работа, добавлен 27.03.2024- 62. Матрица
Элементы и обозначение матриц. Свойства операции произведения матриц. Получение присоединенной матрицы путем замены каждого элемента матрицы на его алгебраическое дополнение. Использование метода обратной матрицы для решения систем линейных уравнений.
презентация, добавлен 14.11.2014 Формирование матрицы А размера nxm посредством цикла for. Разработка математической модели. Математические операции с полученными выражениями. Формирование двух произвольных матриц А и В порядка m при помощи цикла for и генератора случайных чисел rnd.
контрольная работа, добавлен 15.10.2013Понятие математических матриц, источники их формирования и развития в науке. Основные элементы и их взаимодействие. Описание действий с таблицами: сложение, вычитание, умножение между собой и на число. Рассмотрение свойств транспортированных матриц.
презентация, добавлен 23.12.2013Математические подходы к определению вероятности, ее роль в науке. Классический подход к теории вероятности, понятие равновозможности. Область применения геометрической вероятности. Доказательства и примеры теорем сложения и умножения вероятностей.
реферат, добавлен 15.06.2010Сущность и математическое обоснование, обозначения и классификация матриц, их разновидности и правила умножения. Характеристика и главные признаки обратимых матриц. Описание простейших свойств определителей. Содержание и использование теоремы Лагранжа.
курсовая работа, добавлен 11.01.2015Основные понятия матрицы: элементы, линейные матричные операции. Условие совместности системы линейных уравнений. Метод последовательного исключения переменных Гаусса — применение и модификации, достоинства, устойчивость. Неоптимальность метода Крамера.
презентация, добавлен 11.12.2013Рассмотрение методов решения систем алгебраических уравнений с блочными матрицами ленточной структуры. Ознакомление с общими условиями корректности метода матричной прогонки. Проведение проверки существования обычного LU-разложения для матрицы Якоби.
статья, добавлен 23.06.2018Элементы, из которых состоит множество. Примеры обозначений с помощью логической символики. Квантор всеобщности и существования. Свойства множеств. Операции логического сложения, умножения, разности. Окрестности точки х как особый вид множества.
лекция, добавлен 29.09.2013Изучено способы умножения, представлены интересные и более рациональные способы вычисления, используя порой только карандаш и лист бумаги и не применять знания умножения. Приведены примеры применения разных способов умножения в решении конкретных задач.
научная работа, добавлен 03.05.2019Перечень возможных математических действий с разными по свойствам матрицами. Пути решения систем линейных уравнений. Очерк основных понятий в векторной алгебре. Параметры и виды кривых на поверхности второго порядка. Свойства эквивалентных функций.
курс лекций, добавлен 23.07.2015Простые и итерационные методы вычисления систем уравнений. Нормы вектора и матрицы. Условия их согласованности. Коэффициентная устойчивость решения по правой части. Алгоритм и определение трудоемкости метода Гаусса. Операции умножения и деления.
презентация, добавлен 30.10.2013Определение и свойства направленных отрезков, вектора. Законы сложения, вычитания и умножения векторов. Критерии коллинеарности и компланарности векторов. Свойства базиса на прямой, на плоскости и в пространстве. Законы скалярного и векторного умножения.
учебное пособие, добавлен 27.10.2013Определение квадратной матрицы, на главной диагонали которой стоят единицы. Построение матрицы В, элементы которой получены путем умножения каждого элемента матрицы А на это число. Определение бесконечно большой величины. Правила дифференцирования.
контрольная работа, добавлен 08.10.2014Особенности исследования нелинейной функции одной переменной. Рассмотрение основных операций с матрицами. Решение системы линейных уравнений. Изучение приближения таблично заданной функции. Способы определения экстремума функции двух переменных.
курсовая работа, добавлен 19.05.2015