Еліптичні і параболічні крайові задачі з похідною за часом в крайовій умові в плоскому куті та їх застосування в задачах з вільними межами
Крайові задачі для рівняння Пуассона з правою частиною та для еліптичного рівняння другого порядку зі змінними коефіцієнтами яка залежить від часу як від параметру, в плоскому куті з граничною умовою, що містить як похідні за просторовими змінними.
Подобные документы
Дослідження властивостей зважених псевдообернених матриць і нормальних псевдорозв’язків як з додано означеними та із виродженими вагами, що є внеском в теорію зваженої псевдоінверсії і основою побудови методів розв’язування задач лінійної алгебри.
автореферат, добавлен 04.03.2014Алгебраїчне рівняння непарної степені. Представлення многочленів четвертої степені з дійсними коефіцієнтами у виді добутку двох квадратних трьохчленів з дійсними коефіцієнтами. Зведення до інтеграла від раціональної функції та до канонічної форми.
курсовая работа, добавлен 02.12.2016Характеристика підходів до розв’язання рівняння коливань математичного маятника з квадратичним тертям. Дослідження варіанту наближеного розв’язання оберненої задачі ідентифікації коефіцієнта опору середовища. Обчислення амплітуд затухаючих коливань.
статья, добавлен 25.03.2016Суть функціонального рівняння. Розв'язання функціонального рівняння способом заміни та утворенням системи лінійних рівнянь. Задачі про існування функції при певних умовах. Розв'язання нестандартних функціональних рівнянь. Суть графічного розв’язання.
курсовая работа, добавлен 02.01.2014Визначення розв'язки лінійного двоточкового і лінійного краєвого завдання для лінійного неоднорідного гіперболічного рівняння другого порядку. Опис умов існування розв'язок краєвих завдань квазілінійних рівнянь другого порядку. Розрахунок класів функцій.
автореферат, добавлен 21.11.2013Дослідження еволюції підходів до вирішення коректності математичних задач. Доведення теореми неперервний лінійний. Перевірка правильності рівнянь другого порядку з частинними похідними та виконання умов леми. Розгляд теорії функціональних рівнянь.
реферат, добавлен 17.06.2014- 82. Нелокальна крайова задача для диференціального рівняння з частинними похідними у комплексній області
Дослідження нелокальної крайової задачі для рівняння з частинними похідними з оператором узагальненого диференціювання, який діє на функції скалярної комплексної змінної. Доведення теореми єдиності та теореми існування розв'язку задачі у просторі.
статья, добавлен 25.03.2016 Методика побудови узагальненого оператора Гріна для лінійних систем диференціальних рівнянь із імпульсним впливом. Розв’язок нетерової слабконелінійної крайової задачі для системи звичайних диференціальних рівнянь за алгоритмом Ньютона–Канторовича.
автореферат, добавлен 28.08.2015Опис підпростору розв’язків задачі Коші для неявного, виродженого рівняння вищого порядку, знаходження ознак коректності. Оцінка початкового моменту апроксимації розв’язків неявного рівняння вищого порядку лінійними комбінаціями елементарних розв’язків.
автореферат, добавлен 28.08.2014Поява диференціальних рівнянь. Методи збурень, які використовуються в механіці. Умови існування періодичних розв’язків. Теореми про граничні значення. Нелінійні диференціальні рівняння другого порядку. Методи розв’язання деяких типів нелінійних рівнянь.
курсовая работа, добавлен 22.06.2012Застосування способу оберненої спектральної задачі. Побудова методу дослідження неізоспектральних ланцюжків, породжених рівнянням Лакса, пов'язаним із самоспряженими та унітарними операторами. Класифікація ланцюгових систем, що допускають інтегрування.
автореферат, добавлен 29.08.2015Аналіз оператору зсуву. Інтерполювання функцій, що задаються таблично. Підсумовування функцій, лінійні різницеві рівняння зі сталими коефіцієнтами. Однорідні та неоднорідні різницеві рівняння. Аналіз економічної моделі прискорення Самюельсона-Хікса.
реферат, добавлен 08.11.2017Дослідження особливостей розв’язання задачі Коші для параболічного рівняння з імпульсним впливом. Основні поняття p-адичного аналізу. Властивості розв’язку задачі Коші над полем. Формули диференціювання теплових потенціалів виразів, на основі лем.
статья, добавлен 25.03.2016Поняття лінійних диференціальних рівнянь першого порядку, особливості їх розв’язання за методом І. Бернуллі (добуток двох функцій). Метод варіації та інтегрування при розв’язанні лінійного диференціального рівняння першого порядку та рівняння Я. Бернуллі.
лекция, добавлен 01.05.2014Дослідження початково-крайової задачі для квазілінійних двовимірних рівнянь параболічного типу зі сталими коефіцієнтами. Застосування функцій Гріна для одержання вагових апріорних оцінок точності різницевих схем у випадку крайових умов третього роду.
автореферат, добавлен 29.10.2015Абсорбер як технологічний об`єкт керування. Рівняння матеріальних балансів. Рівняння в безрозмірному виді змінних. Рівняння в канонічній формі і в формі Коші. Перетворення за Лапласом змінної часу. Передатні функції за каналами збурення і керування.
лекция, добавлен 28.02.2016Властивості ступенів і коренів. Дії з радикалами. Обчислення ірраціональних виразів в математиці. Загальні відомості про алгебраїчні рівняння. Задачі на використання дискримінанта. Розміщення коренів квадратного рівняння. Розклад многочлена на множники.
лекция, добавлен 24.01.2014Дослідження асимптотичних властивостей розв’язків істотно нелінійних диференціальних рівнянь другого порядку з нелінійностями. Розробка асимптотичних зображень для підмножин класу розв’язків. Дослідження розв’язків різницевого рівняння Емдена-Фаулера.
автореферат, добавлен 14.08.2015Дослідження видів найбільш розповсюджених математичних рівнянь. Приклади розв’язувань завдань на рух. Засоби вирішення задач, що містять в умові невідомі числові величини. Вирішування прикладів за допомогою нерівностей та цілочислових невідомих.
лекция, добавлен 26.01.2014Вивчення в повних банахових шкалах еліптичної, еліптичної з параметром і параболічної задачі Соболева для одного рівняння і для загальних систем. Умови існування узагальненого розв’язку і доведення теореми про повний набір ізоморфізмів, їх застосування.
автореферат, добавлен 22.02.2014Лінійне тригонометричне рівняння. Зведення тригонометричного рівняння до алгебраїчного. Розклад рівняння на множники. Рівність однойменних функцій. Перетворення добутків на суми, сум на добутки. Системи тригонометричних рівнянь. Вправи для розв’язування.
лекция, добавлен 24.01.2014Властивості розв'язків лінійного однорідного диференціального рівняння. Необхідні і достатні умови лінійної незалежності розв'язків лінійного однорідного диференціального рівняння n–го порядку. Фундаментальна система розв'язків диференціального рівняння.
реферат, добавлен 30.05.2013Вивчення основ розв’язування систем однорідних рівнянь з сталими коефіцієнтами методом Ейлера та матричним методом, доведення теорем та виведення закономірностей. Властивості розв’язків лінійних неоднорідних систем. Особливості рішення задач Коші.
реферат, добавлен 19.11.2009Рішення алгебраїчного рівняння третього ступеня. Обчислення періодичного режиму прямим інтегруванням до визначення коренів системи трансцендентних рівнянь ітераційними методами Ньютона та Стефенсена. Система диференційних рівнянь другого порядку.
контрольная работа, добавлен 13.03.2011Основні найпростіші тригонометричні та лінійні рівняння. Зведення тригонометричного рівняння до алгебраїчного. Розкладання рівняння на множники. Рівність однойменних функцій. Системи тригонометричних рівнянь. Рішення, засновані на обмеженості функцій.
лекция, добавлен 26.01.2014