Модель множественной регрессии

Основные положения регрессионного анализа. Классическая нормальная линейная модель множественной регрессии. Сущность метода наименьших квадратов. Теорема Гаусса-Маркова. Коэффициенты детерминации. Понятия мультиколлинеарности и частной корреляции.

Подобные документы

  • Нахождение метода наименьших квадратов уравнения линейной регрессии, где признак: среднесписочное число работников магазина и сумма розничного товарооборота. Определение параметров зависимости. Применение коэффициента корреляции, его вычисление.

    контрольная работа, добавлен 24.11.2014

  • Этапы построения эконометрической модели. Применение парной регрессии в исследованиях. Задачи корреляционно-регрессионного анализа. Виды функций, часто используемых в эконометрическом моделировании. Показатели силы связи в моделях парной регрессии.

    презентация, добавлен 09.11.2013

  • Расчет оценки параметров уравнения парной линейной регрессии. Оценка тесноты связи между признаками с помощью выборочного коэффициента корреляции. Построение доверительного интервала для коэффициента регрессии. Осуществление дисперсионного анализа.

    контрольная работа, добавлен 16.03.2017

  • Корреляционное поле между объемом предложения блага и его ценой. Расчет коэффициентов линейного уравнения множественной регрессии и пояснение экономического смысла его параметров. Коэффициенты автокорреляции, наличие сезонных колебаний во временном ряде.

    практическая работа, добавлен 16.12.2014

  • Расчет матрицы парных коэффициентов корреляции. Оценка параметров линейной и парной модели с полным перечнем факторов, влияние факторных переменных на Y по коэффициентам регрессии. Тестирование предпосылок теоремы Гаусса-Маркова для двух моделей.

    контрольная работа, добавлен 18.04.2018

  • Множественная регрессия как наиболее распространенный метод в эконометрике. Отбор факторов при построении уравнения множественной регрессии. Метод наименьших квадратов, свойства оценок на его основе. Сравнение влияния различных факторов на результат.

    лекция, добавлен 25.04.2015

  • Составление уравнения линейной регрессии с использованием матричного метода. Нахождение параметров нормального распределения для статистик и числовых значений переменных. Расчет коэффициента детерминации и оценка качества выбранного уравнения регрессии.

    контрольная работа, добавлен 10.07.2016

  • Расчет линейного коэффициента парной корреляции и оценка тесноты связи. Особенность статистической значимости параметров регрессии и корреляционной системы. Подсчет ошибки прогноза и его доверительного интервала. Вычисление коэффициента детерминации.

    контрольная работа, добавлен 28.08.2017

  • Разработка оптимального плана производства, дающего наибольшую прибыль. Построение графика временного ряда; построение линейной модели и оценка ее параметров с помощью метода наименьших квадратов. Оценка адекватности и точности построенной модели.

    контрольная работа, добавлен 09.06.2014

  • Построение линейного уравнения парной регрессии на основе данных о среднедушевом прожиточном минимуме в день на одного трудоспособного жителя страны и о среднедневной заработной плате. Расчет коэффициента парной корреляции и средней ошибки аппроксимации.

    контрольная работа, добавлен 21.02.2011

  • Построение линейного уравнения парной регрессии y от x. Причины существования случайной ошибки. Определение среднеквадратического отклонения; коэффициентов корреляции, эластичности, детерминации. Оценка статистической значимости парной линейной регрессии.

    контрольная работа, добавлен 14.04.2021

  • Применение фиктивных переменных в моделях множественной регрессии. Использование фиктивных переменных в моделях с временными рядами. Введение качественных факторов в регрессионную модель. Способ преобразования качественных переменных в количественные.

    контрольная работа, добавлен 01.03.2016

  • Линейные и нелинейные модели парной регрессии и корреляции. Свойства оценок на основе метода наименьших квадратов. Анализ системы эконометрических уравнений. Характеристика структурной и приведенной форм. Суть автокорреляции уровней временного ряда.

    лекция, добавлен 10.06.2014

  • Изучение величины, выражающей зависимость среднего значения случайной величины от значений случайной величины. Проведение исследования сущности и цели регрессионного анализа. Определение коэффициентов линейного уравнения множественной регрессии.

    презентация, добавлен 07.10.2020

  • Расчет линейного коэффициента парной корреляции, коэффициента детерминации и средней ошибки аппроксимации. Оценка статистической значимости уравнения регрессии и отдельных ее параметров и корреляции с помощью F-критерия Фишера и t-критерия Стьюдента.

    контрольная работа, добавлен 13.04.2022

  • Построение уравнения парной регрессии. Расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Оценка статической значимости параметров регрессии и корреляции. Прогноз зарплаты в зависимости от значения прожиточного минимума.

    задача, добавлен 27.09.2016

  • Основные типы эконометрических моделей и исходные данные для их построения. Оценка статистической значимости параметров линейной модели множественной и парной регрессии. Применение эконометрических моделей для прогнозирования, примеры их построения.

    учебное пособие, добавлен 07.05.2015

  • Определение динамики стоимости недвижимости при помощи корреляционно-регрессионного анализа. Ввод исходных данных и построение корреляционной матрицы. Поиск доверительных интервалов для коэффициентов уравнения регрессии. Расчёт коэффициента эластичности.

    контрольная работа, добавлен 26.03.2014

  • Использование регрессионного анализа в физико-химических исследованиях. Обработка экспериментальных результатов методом наименьших квадратов. Определение коэффициентов уравнений регрессии при аппроксимации данных полиномами первой и второй степени.

    контрольная работа, добавлен 10.12.2015

  • Общие понятия эконометрических моделей и задачи экономического анализа, решаемые на их основе. Применение регрессионного анализа в экономике. Определение параметров модели парной линейной регрессии. Модели стационарных и нестационарных временных рядов.

    курс лекций, добавлен 14.10.2017

  • Практика расчета параметров уравнения парной линейной регрессии. Оценка тесноты связи с помощью показателей корреляции через t-критерий Стьюдента и детерминации, статистической надежности результатов регрессионного анализа с помощью F-критерия Фишера.

    контрольная работа, добавлен 14.11.2011

  • Оценка и расчёт значимости коэффициентов уравнения множественной регрессии и корреляции с помощью f-критерия Стьюдента и t-статистики Стьюдента: интерпретация параметров, коэффициентов эластичности и стандартизированных бетта-коэффициентов уравнения.

    реферат, добавлен 08.06.2012

  • Информация, характеризующая зависимость выпуска продукции от объема капиталовложений по предприятиям легкой промышленности региона. Параметры уравнения линейной регрессии, экономическая интерпретация коэффициента регрессии. Остаточная сумма квадратов.

    контрольная работа, добавлен 20.04.2015

  • Рассмотрение основных аспектов модели множественной регрессии. Проверка наличия мультиколинеарности факторов. Оценка статистической надежности уравнения регрессии с помощью F–критерия Фишера. Особенности расчета минимальных среднегодовых издержек.

    контрольная работа, добавлен 08.03.2015

  • Основные цели анализа двумерных данных. Линейный коэффициент корреляции. Анализ двумерной диаграммы рассеяния. Сущность линейного регрессионного анализа. Проверка надежности регрессионной модели. Прогнозирование среднего значения нового наблюдения.

    лекция, добавлен 29.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.