Возможности интегрирования методом Стилтьеса для функции с ограниченным (конечным) изменением
Функции с ограниченным (конечным) изменением. Определение, общие условия существования интеграла Стилтьеса. Интегрирование по частям. Приведение интеграла Стилтьеса к интегралу Римана. Сведение криволинейного интеграла второго типа к интегралу Стилтьеса.
Подобные документы
Исследование локальных свойств интеграла столкновений и классического решения нестационарного уравнения переноса излучения. Свойства гладкости интеграла столкновений. Сущность кусочно-гладкой поверхности, изменение порядка интегрирования в интегралах.
статья, добавлен 21.06.2018Определение и условие существования определенного интеграла, геометрические приложения: длина дуги, объем тела, площадь поверхности. Физические приложения: работа переменной силы, давление жидкости; статические моменты и координаты центра тяжести.
контрольная работа, добавлен 12.06.2012Собственные и несобственные интегралы, зависящие от параметра. Признаки, свойства и вычисление двойного интеграла в случае прямоугольной и криволинейной области. Определение интеграла Эйлера первого рода (Бета-функция) и второго рода (Гамма-функция).
учебное пособие, добавлен 28.12.2013Использование метода неопределенных коэффициентов для нахождения значений. Решение задачи, приводящей к понятию определенного интеграла. Определенный интеграл как предел интегральной суммы. Рассмотрение способов вычисления определенного интеграла.
контрольная работа, добавлен 09.04.2018- 80. Формула Грина
Сущность формулы Грина как установления связи между криволинейным интегралом по координатам, вычисленным по замкнутому контуру и двойным интегралом по области. Характеристика условий независимости криволинейного интеграла от пути интегрирования.
лекция, добавлен 17.01.2014 Приближенное решение определенного интеграла от непрерывной функции, расчет погрешностей. Способы решения дифференциальных уравнений. Абсолютная и условная сходимость числовых и степенных рядов. Интервал, свойства и радиус сходимости степенного ряда.
контрольная работа, добавлен 06.06.2015Основы вычислительной математики. Задачи численного интегрирования. Интерполяционная формула Лагранжа. Вывод формулы Симпсона, правила Рунге, метод двойного просчета, схема уточнения значений интеграла, процесс Эйтнена. Подсчет погрешности результата.
реферат, добавлен 29.05.2009Понятие, определение и свойства неопределенного интеграла. Представление рациональной функции в виде суммы простейших дробей. Интегрирование простейших дробей. Понятие дифференциального бинома. Примеры вычисления интегралов от дифференциального бинома.
курсовая работа, добавлен 10.12.2017История интегрального исчисления. Основные этапы, характеризующие метод Архимеда. Общий принцип Кавальери для площадей плоских фигур. Определение и свойства интеграла. Способы нахождения площади криволинейной трапеции. Применение интеграла в физике.
реферат, добавлен 19.10.2010Определение и характерные свойства интеграла, история развития соответствующего исчисления. Криволинейная трапеция, методика ее построения и анализа. Свойства определенного интеграла, направления его применения. Исследование набора стандартных картинок.
курсовая работа, добавлен 12.11.2014Математическое понятие и сущность функции. Свойства и графики функций. Определение первообразной функции. Общие правила обобщения степени. Характеристики первообразной и интеграла. Нахождение натурального логарифма числа в математическом анализе.
лекция, добавлен 18.05.2015Порядок и решение дифференциального уравнения. Интегрирование как процесс нахождения решения дифференциального уравнения. Уравнение с частными производными. Теорема существования и единственности решения дифференциального уравнения первого порядка.
реферат, добавлен 22.05.2014Перестановка порядка интегрирования в силу непрерывности подынтегральной функции и конечности кривых. Оценка интеграла Коши по аналитической кривой. Аналитическая зависимость от параметра. Существование производных всех порядков у аналитической функции.
контрольная работа, добавлен 23.04.2011Интеграл Римана - важнейшее понятие математического анализа. Характеристика геометрического смысла данного выражения. Определение формулы Ньютона-Лейбница. Риманова сумма в пределе при измельчении разбиения - результат вычисления площади подграфика.
контрольная работа, добавлен 10.05.2016Характеристика интегральных поверхностей первого и второго рода. Определение и вычисление поверхностного интеграла. Основной подсчет статических моментов плоскости относительно координатных плоскостей. Выражение через параметры подинтегральной функции.
статья, добавлен 12.06.2016Понятие определенного интеграла, применение формулы Ньютона-Лейбница при его вычислении. Использование метода замены переменной. Определение пределов интегрирования, правила перестановки. Свойства аддитивности и линейности. Классы интегрируемых функций.
лекция, добавлен 03.05.2016Первообразная функция и неопределенный интеграл. Восстановление функции по ее производной. Определение пройденного пути по заданной скорости движения. Интеграл и задача об определении площади. Свойства неопределенного интеграла. Примеры интегрирования.
курсовая работа, добавлен 22.04.2011Понятие определенного, двойного и тройного интегралов. Характеристика теорем существования двойного и тройного интегралов. Сущность теоремы о среднем значении для двойного интеграла. Условия перехода пределов интегрирования к полярным координатам.
контрольная работа, добавлен 27.08.2013Понятие криволинейного интеграла 1-ого рода от функции как предела интегральной суммы, полученной в результате разбиения этой кривой на малые участки с длиной и постоянной плотностью, механический смысл и порядок определения. Координаты центра тяжести.
практическая работа, добавлен 18.10.2013- 95. Двойной интеграл
Сущность и геометрический смысл двойного интеграла. Понятие и принципы построения цилиндрического бруса, порядок и этапы вычисления его фактического объема. Методика и основные этапы определения внутреннего интеграла и анализ полученных результатов.
практическая работа, добавлен 18.10.2013 Рассмотрение теоретических основ алгебры. Теорема о разложении правильной рациональной дроби на сумму простейших дробей. Интегрирование целых рациональных функций. Различные способы нахождения и математического анализа неопределенного интеграла.
лекция, добавлен 17.01.2014Понятие и общая характеристика неопределенного интеграла, его основные свойства и функции. Сущность и особенности рациональной дроби, порядок и принципы ее интегрирования. Сходимость несобственных интегралов II рода. Изучение дифференциальных уравнений.
лекция, добавлен 02.05.2012Интегральная сумма для криволинейного интеграла. Порядок ее вычисления путем замены в подынтегральном выражении переменных Х и У через параметр, представление дифференциала дуги dS как функции параметра. Примеры вычисления криволинейных интегралов.
презентация, добавлен 17.09.2013Изучение свойств определенного интеграла. Описание точных методов их вычисления по формулам Ньютона-Лейбница, интегрирования по частям и путем замены переменной в определенном интеграле. Описание приближенных методов вычисления определённых интегралов.
реферат, добавлен 01.12.2016Понятие первообразной функции и неопределенного интеграла. Правила интегрирования. Площадь криволинейной трапеции. Формула Ньютона-Лейбница и первообразная функция. Вычисление площади области. Формулы вычисления. Площадь фигуры, ограниченная параболой.
лекция, добавлен 26.07.2015