Качественная теория дифференциальных уравнений
Основные черты динамической системы, представляющие как математический интерес, так и большой интерес для приложений. Поиск и исследование простого и сложного состояний равновесия. Проведение исследования бесконечно-удаленной части вне концов оси Oy.
Подобные документы
Две технологии программной реализации (параллельная, последовательная) алгоритмов приближенных решений краевых задач для обыкновенных дифференциальных уравнений. Сравнение последовательных и параллельных вычислений. Метод Галеркина и конечной разности.
статья, добавлен 02.02.2019Основные свойства системы дифференциальных уравнений (Навье-Стокса) в частных производных, описывающей движение вязкой ньютоновской жидкости. Уравнения Навье-Стокса в сферической системе координат. Скалярная форма записи системы уравнений Навье-Стокса.
презентация, добавлен 14.01.2018Определение момента окончания переходного процесса при изменении параметров непрерывной динамической системы на основе применения метода Ляпунова, основанного на оценивании областей притяжения состояний равновесия. Проблема построения функции Ляпунова.
статья, добавлен 12.05.2018Понятие обыкновенных дифференциальных уравнений и их применение для математического моделирования электромеханических систем. Приведение дифференциальных уравнений к нормальной форме Коши. Пример решения задачи методом Рунге-Кутты 2-го и 4-го порядков.
реферат, добавлен 05.06.2013Метод простых итераций (метод последовательных приближений). Вычисления для построения графика уравнения системы. Решение системы нелинейных уравнений Microsoft Excel с использованием надстройки "поиск решения". Решения системы уравнений в пакете mathcad.
курсовая работа, добавлен 07.11.2020- 106. Заметка о необходимости создания инструментальных средств для решения дифференциальных уравнений
Численное решение дифференциальных уравнений как интерактивный процесс взаимодействия человека или неформальных и формальных процедур по поиску аналитического описания интегральной кривой или ее вида. Традиционный и нетрадиционный процесс решения дифур.
статья, добавлен 25.08.2020 Разработка и анализ методики исследования неподвижных точек автономной системы дифференциальных уравнений для подтверждения гипотезы о существовании решения этой системы с хаотическими колебаниями. Определение параметров, управляющих ее поведением.
статья, добавлен 31.03.2017Новые признаки разрешимости квазилинейных краевых задач для абстрактных функционально-дифференциальных уравнений с необратимой линейной частью и систем квазилинейных операторных уравнений. Разрешимость задач для уравнения с отклоняющимся аргументом.
автореферат, добавлен 17.12.2017Применение математических методов в деятельности среднего медицинского персонала. Линейность или нелинейность дифференциальных уравнений. Дифференциальные уравнения с разделяющимися переменными. Моделирование с применением дифференциальных уравнений.
реферат, добавлен 19.01.2015Знакомство с основными особенностями движения сферического клубня по рабочему органу дисковой плоскорешетной картофелесортировки. Рассмотрение способов решения системы дифференциальных уравнений. Анализ математической модели движения клубня по решету.
статья, добавлен 17.06.2021Понятие математических моделей, их классификация и свойства, применение числовых методов в создании. Метод Рунге-Кутта в решении систем дифференциальных уравнений. Система Mathcad. Аппроксимация и ее главные функции. Алгоритмический анализ задачи.
курсовая работа, добавлен 19.09.2013Рассмотрение условий и конкретных типов задач, при которых знание собственных значений характеристического полинома при решении линейных дифференциальных уравнений не является обязательным. Периодическая переходная функция при периодическом воздействии.
статья, добавлен 21.09.2016Поиск равновесных решений круговой ограниченной задачи четырёх тел, сформулированной на основе треугольных решений Лагранжа, и анализ их устойчивости в смысле Ляпунова. Порядок выведения функциональных уравнений, определяющих равновесные конфигурации.
автореферат, добавлен 19.08.2018Основные этапы и закономерности решения дифференциальных уравнений. Порядок построения гармонического ряда и его анализ. Почленное интегрирование заданных значений по признаку сходимости Коши. Отличительные черты собственного и несобственного интеграла.
контрольная работа, добавлен 29.03.2018Задача Коши в разделе численных методов решения дифференциальных уравнений. Возможность применения переменного шага. Малая погрешность при решении методом Рунге-Кутта. Анализ причин получаемых неприятностей при численном решении конкретных задач.
статья, добавлен 26.10.2010Общие решения дифференциальных уравнений первого и второго порядка. Исследование на абсолютную и условную сходимость знакочередующегося ряда. Поиск области сходимости степенного ряда. Определение теории вероятности изготовления детали, выигрыша в лотерее.
контрольная работа, добавлен 05.02.2015- 117. Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
Задачи, приводящие к уравнениям гиперболического типа (колебания струны). Методы решения дифференциальных уравнений гиперболического типа. Дифференциальные уравнения параболического типа. Вывод уравнения дифракции излучения на сферической частице.
дипломная работа, добавлен 27.02.2020 - 118. Использование матриц
Матрица и её основные свойства, ранг, определитель и способы его поиска, обратная матрица. Решение системы линейных уравнений по формулам Крамера. Использование матрицы в решении системы уравнений и определении длины вектора, поиск базисных решений.
контрольная работа, добавлен 27.11.2015 Разработка метода исследования дифференциальных уравнений с-образными коэффициентами с помощью аппроксимирующих семейств операторов, являющихся возмущениями исходного оператора. Применение теории к исследованию уравнений с-образными коэффициентами.
автореферат, добавлен 18.08.2018Классификация методов решения обыкновенных дифференциальных уравнений. Общие понятия теории многошаговых методов. Явные и неявные формулы Милна. Практические способы оценки погрешности приближенного решения. Автоматический выбор шага интегрирования.
контрольная работа, добавлен 02.12.2012Понятие устойчивости, асимптотической устойчивости и неустойчивости по Ляпунову. Их геометрическая интерпретация. Устойчивость решения автономной системы и линейных дифференциальных уравнений с постоянными коэффициентами. Простейшие типы точек покоя.
контрольная работа, добавлен 22.01.2016Характеристика и особенности численного дифференцирования. Рассмотрение исправленного метода Эйлера, блок-схема алгоритма. Применение численного дифференцирования, Решение обыкновенных дифференциальных уравнений первого порядка с начальными данными.
курсовая работа, добавлен 10.06.2021Построение приближений решения линейных дифференциальных уравнений с переменными коэффициентами. Приведение их к интегро-дифференциальным уравнениям Вольтерра при помощи интегральных преобразований Лапласа и основных теорем операционного исчисления.
статья, добавлен 26.07.2016Метод Эйлера как простейший численный метод решения систем обыкновенных дифференциальных уравнений. Описание данного метода, дающего решение в виде таблицы приближенных значений искомой функции, его исправления и модификации. Оценка погрешности.
реферат, добавлен 27.10.2019Решение дифференциального уравнения первого порядка методом Рунге-Кутты. Численные методы решения задачи Коши. Практическая оценка погрешности. Однотипные дифференциальные уравнения системы. Коэффициенты при постоянной. Применение правила Рунге.
лабораторная работа, добавлен 16.06.2014