Методы интерполяции

Сплайн интерполяция, ее практическое значение. Определение кубического полинома в промежутке между известными узлами. Расчет параметров кубических интерполяционных сплайнов. Группа сопряженных кубических многочленов, в местах сопряжения которых функция.

Подобные документы

  • Анализ многочленов Лежандра и Чебышева, преобразования Лапласа. Обращение преобразования Лапласа с помощью многочленов, ортогональных на конечном промежутке, с применением смещенных многочленов Лежандра, смещенных многочленов Чебышева первого рода.

    контрольная работа, добавлен 01.12.2020

  • Определение абсолютной и относительной погрешности численного результата. Решение уравнений с одной неизвестной. Понятие кратного корня. Методы уточнения корней простой итерации. Решение систем линейных уравнений. Особенности интерполяции функций.

    курс лекций, добавлен 08.02.2015

  • Место, теоретическая основа, связи линейных, квадратных, кубических, логарифмических, показательных, тригонометрических уравнений в курсе математики средней школы. Практическое выявление самых распространенных в математике уравнений и способов их решения.

    научная работа, добавлен 08.11.2015

  • Понятие уравнений третьей степени. Исторические факты решения уравнений высших степеней. Решение уравнений третьей степени с целыми коэффициентами. Формула Кардано для приведенного кубического уравнения. Общие способы решения кубических уравнений.

    практическая работа, добавлен 22.10.2019

  • Анализ сложности реализации различных способов интерполяции, оценка погрешности из-за наличия в спектре сигнала составляющих выше частоты Найквиста. Использование усеченной sinc-интерполяции с окном Ланцоша. Описание и специфика линейной интерполяции.

    статья, добавлен 29.01.2019

  • Сущность многочленов: понятие, степень, равенство, операции, схема Горнера. Характеристика многочленов нулевой степени. Значение корней многочленов в алгебре. Особенности схемы Горнера, примеры симметричных многочленов и проверка корня на кратность.

    курсовая работа, добавлен 19.01.2012

  • Понятие о производной функции в точке, ее физический и геометрический смысл. Методические особенности изучения линейной, квадратной и кубических функций, их свойства и график. Определение производной функции в точке, нахождение промежутков возрастания.

    контрольная работа, добавлен 07.03.2017

  • Интерполяционные полиномы Ньютона для равных и неравных интервалов. Сравнение интерполяционных полиномов Лагранжа и Ньютона. Порядок вычисления конечных разностей. Определение эффективного уровня интерполяционного полинома для аппроксимации функции.

    лабораторная работа, добавлен 06.11.2021

  • Точечная группа симметрии как группа симметрии, операции которых оставляют хотя бы одну точку пространства на месте. Формульные элементы симметрии. План точечной группы 4 mm. Значение углов между элементами симметрии. Пространственная группа симметрии.

    контрольная работа, добавлен 04.11.2011

  • Ознакомление с основными правилами составления таблиц. Характеристика процесса сглаживания табличных данных и графиков. Исследование и анализ методов интерполяции и экстраполяции. Установление параметров и видов законов распределения случайных величин.

    контрольная работа, добавлен 18.03.2016

  • Описание применения простого метода оценки ошибки интерполяции. Исследование свойства интерполированного сигнала. Пример данных, недостаточно описывающих сигнал. Использование и сущность метода оценки ошибки интерполяции для выбора метода интерполяции.

    статья, добавлен 07.11.2018

  • Интерполяция функции - одна из важнейших задач численного анализа. Постановка задачи интерполяции и общие идеи её решения. Применение этого метода в вычислении интегралов. Описание интерполирования методом Лагранжа. Суть интерполирования методом Ньютона.

    контрольная работа, добавлен 10.01.2012

  • Основополагающее значение задачи интерполяции. Основные методы решения задач численного дифференцирования, интегрирования, решения дифференциальных и интегральных уравнений. Классификация методов приближения. Критерии качества оценки погрешности.

    курсовая работа, добавлен 20.01.2013

  • Строение процессов исходя из тригонометрических интерполяционных полиномов по узлам Чебышева. Исследование приближенного представления функций. Зависимость выбора систем интерполяции от того, насколько точно многочлен будет являться ее приближением.

    контрольная работа, добавлен 09.06.2016

  • Теория модулярных форм. Анализ соответствия между элементами конечных групп и модулярными формами, основанный на рассмотрении характеристических многочленов операторов. Проблема нахождения конечных групп на примере элементарных абелевых 2-групп.

    статья, добавлен 31.05.2013

  • Изучение сущности и особенностей построения интерполирующей функции. Рассмотрение метода полиномиальной интерполяции Шарля Эрмита. Анализ интерполяционных формул для функций двух переменных. Специфика численного дифференцирования и его погрешность.

    реферат, добавлен 19.05.2014

  • Сущность интерполяции, понятие разделенных и конечных разностей. Интерполяционная формула Лагранжа и Ньютона, вывод формулы Ньютона через разделенные разности и ее применение для равностоящих узлов интерполяции. Биноминальные многочлены. Теорема Polya.

    курсовая работа, добавлен 15.06.2011

  • Понятие и типы многочленов, принципы и закономерности их формирования. Свойства делимости многочленов. Метод неопределённых коэффициентов. Теорема Безу и ее следствия. Разложения многочлена на множители. Степень многочленов. Наименьшее общее кратное.

    курсовая работа, добавлен 24.06.2011

  • Понятие и типы многочленов. Кольцо симметрических многочленов. Наиболее общий способ получения симметрических многочленов, формулирование теоремы. Доказательство существования многочлена с использованием принципа математической индукции, результант.

    курсовая работа, добавлен 18.03.2013

  • Многочлен как один из важнейших классов элементарных функций. Целый ряд преобразований в математике, связанный с изучением многочленов. Коэффициенты многочлена из определённого коммутативного кольца. Множества, определённые как решения систем многочленов.

    контрольная работа, добавлен 23.04.2011

  • Рассмотрение условий и конкретных типов задач, при которых знание собственных значений характеристического полинома при решении линейных дифференциальных уравнений не является обязательным. Периодическая переходная функция при периодическом воздействии.

    статья, добавлен 21.09.2016

  • Анализ интерполяции функций, построение по заданной функции другой, значения которой совпадают со значениями заданной функции в некотором числе точек. Применение методов вычислительной математики для исследования результатов химического эксперимента.

    курсовая работа, добавлен 07.05.2020

  • Построение интерполяционной функции, удовлетворяющей поставленному условию. Характеристика определителя Вандермонда. Подставление переменной в функцию при известных заданных коэффициентах. Рассмотрение интерполяционных многочленов Лагранжа и Ньютона.

    презентация, добавлен 30.10.2013

  • Методы построения сопряженных чисел в различных гиперкомплексных числовых системах. Существенные свойства сопряженных чисел, отличие их свойств от сопряженных в комплексной системе. Правило построения сопряженного числа для систем второго порядка.

    статья, добавлен 29.01.2019

  • Определение математических понятий: множество, история теории множеств, их сравнение и операции над ними; функция и способы ее задания, группа как непустое множество, конъюнктивная нормальная форма, формальная логика и нормальный алгоритм Маркова.

    контрольная работа, добавлен 19.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.