Применение комплексных чисел в физике

История комплексных чисел. Особенности решения многих задач физики и техники при помощи комплексных чисел. Достоинство комплексного метода. Алгебраическая и тригонометрическая форма комплексного импеданса. Механические приложения комплексных чисел.

Подобные документы

  • Формула нахождения очень больших простых чисел. Алгоритмы разложение больших чисел на простые множители. Вычисление ряда чисел Фибоначчи. Числовой код треугольника Паскаля. Простые числа как основа защиты электронной коммерции и электронной почты.

    статья, добавлен 03.03.2018

  • Характеристика особенностей сложения, вычитания и деления комплексных чисел. Изучение основных понятий и правил векторной алгебры. Анализ операций над скалярными и векторными функциями в декартовой, цилиндрической и сферической системах координат.

    лекция, добавлен 21.09.2014

  • Изучение методов решения кубических уравнений, формула Кардано. Подробный алгоритм решения уравнений третьей степени и его реализация в объектно-ориентированной среде Delphi. Модуль комплексных чисел. Определение значения аргумента кубического корня.

    статья, добавлен 03.03.2018

  • Обнаружение первых задач, связанных с извлечением квадратного корня. Применение теоремы Пифагора для нахождения стороны прямоугольного треугольника. Использование в математике мнимых чисел, понимаемых как квадратные корни из отрицательных чисел.

    доклад, добавлен 22.10.2020

  • Минуле і теперішнє комплексних чисел які знайшли чисельні застосування: в картографії, електротехніці, гідродинаміці, теоретичній фізиці. Спосіб Гамільтона введення комплексних чисел. Закони для комплексних чисел. Виконання ділення комплексних чисел.

    реферат, добавлен 10.01.2009

  • Операции над множествами и их свойства. Система комплексных чисел. Многочлены с действительными коэффициентами и алгоритм Эвклида. Решение систем линейных уравнений матричным способом. Свойства аффинной и прямоугольной декартовой системы координат.

    курс лекций, добавлен 17.01.2014

  • Системы счисления и способы написания в них натуральных чисел. Множество и подмножество рациональных чисел. Разложение на множители и свойства делимости. Основная теорема арифметики. Представление действительных чисел в виде бесконечных десятичных дробей.

    лекция, добавлен 22.12.2013

  • Предложения решений в целых числах уравнений теории чисел. Доказательство отсутствия решений в целых числах уравнения теоремы Ферма. Предложение доказательства бесконечности регулярных простых чисел. Делимость числителей чисел. Простое число Мерсена.

    статья, добавлен 03.03.2018

  • Понятие дифференциального уравнения. Определение функций производного порядка. Линейные дифференциальные уравнения с постоянными коэффициентами. Решение системы по методу Эйлера. Геометрическая интерпретация комплексных чисел и условия Коши-Римана.

    лекция, добавлен 22.07.2015

  • Результаты экспериментов с выделением сингулярностей (ударных волн, слабых разрывов) при помощи габоровских комплексных фильтров малой длины. Анализ точности локализации особенностей, без специальной адаптации параметров метода к использованным полям.

    статья, добавлен 28.10.2018

  • Зміст дії ділення та правил множення раціональних чисел. Формулювання основних правил ділення раціональних чисел. Способи вироблення у учнів вмінь застосовувати ці правила для розв'язування вправ, що передбачають виконання ділення раціональних чисел.

    конспект урока, добавлен 17.09.2018

  • Теория чисел как непосредственное развитие арифметики, краткий исторический очерк. Понятие числового поля и алгебраического числа. Доказательство теоремы Лиувилля о приближении алгебраических чисел. Подтверждение существования трансцендентных чисел.

    контрольная работа, добавлен 30.10.2010

  • Изучение комплексных чисел в рамках школьной математической программы. Описание правил сложения, вычитания и других действий. Вывод формул сокращенного умножения. Решение примеров с комплексными числами. Представление множества в виде кругов Эйлера.

    реферат, добавлен 02.05.2019

  • Рассмотрение на евклидовой плоскости системы ортонормированных координат. Операции над комплексными числами. Теория стереографической проекции сферы на плоскость. Теорема интегрирования абелевых дифференциалов. Косы как деформирующиеся наборы точек.

    учебное пособие, добавлен 28.12.2013

  • Психолого-педагогические, исторические основы построения факультативных занятий в средней школе. Развитие познавательных интересов учащихся. Анализ содержания учебной литературы по теме "комплексные числа". Методические рекомендации по проведению занятий.

    дипломная работа, добавлен 17.11.2021

  • Использование метода Монте-Карло для решения математических задач при помощи моделирования случайных величин. Способы получения случайных величин. Алгоритмы получения псевдослучайных чисел. Получение псевдослучайных точек методами Неймана и Лемера.

    практическая работа, добавлен 26.12.2016

  • Особливість визначення поняття числа та видів числових множин. Досліджень чисел, які входять до множини цілих, раціональних та дійсних чисел. Розгляд різниці записів у вигляді нескінченного десяткового дробу раціонального та ірраціонального чисел.

    разработка урока, добавлен 08.06.2019

  • История становления понятия вещественного числа. Конструктивные способы определения вещественного числа. Системы аксиом вещественных чисел. Связь вещественных чисел с рациональными. Обобщение и теоретико-множественные свойства вещественных чисел.

    реферат, добавлен 25.02.2016

  • Основы арифметических действий над натуральными числами. Операции декартового произведения множеств. Характеристика комплексных чисел и возможные операции над ними. Пересечение, объединение, дополнение, декартово произведение в курсе школьной математики.

    реферат, добавлен 08.10.2012

  • Комплексные числа как один из подходящих разделов курса математического анализа для реализации профессиональной направленности бакалавров по направлению подготовки Математика и Информатика. Производимые с ними операции. Структура матричной модели.

    контрольная работа, добавлен 12.05.2015

  • Главные свойства деления и сравнения по ненулевому рациональному модулю четных чисел. Доказательство невозможности решения заданных уравнений в целых числах. Доказательство утверждения о том, что сумма двух простых нечетных чисел есть чётным числом.

    статья, добавлен 03.03.2018

  • Алгоритмы умножения, их отличительные особенности, этапы и функции. Умножение беззнаковых чисел, младшими разрядами вперед, со сдвигом суммы ЧП вправо, а также старшими со сдвигом влево. Пути умножения знаковых чисел в прямых и дополнительных кодах.

    реферат, добавлен 12.11.2011

  • Характеристика полных, приведенных и неполных квадратных уравнений. Особенность изучения теоремы Виета. Формирование задания с отрицательным дискриминантом. Главный анализ введения комплексных чисел. Проведение исследования корней биквадратной задачи.

    презентация, добавлен 16.07.2017

  • Характеристика совершенных чисел как натуральных чисел, равных сумме всех своих собственных делителей (то есть всех положительных делителей, отличных от самих чисел). Изучение основных свойств и операций с совершенными числами, анализ их истории.

    презентация, добавлен 20.10.2016

  • Зарождение и история развития систем счисления. Позиционные и непозиционные системы. Представление чисел с фиксированной и плавающей запятой. Перевод целых чисел из одной позиционной системы счисления в другую. Представление целых чисел в компьютерах.

    лабораторная работа, добавлен 04.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.