Мощность множества

Основы теории конечных и бесконечных множеств. Основные классы равномощных множеств. Выведение понятия мощности множества на основе равномощности. Сравнение множеств, их объединение, пересечение, разность и дополнение. Сущность аксиоматической теории.

Подобные документы

  • Форма классической логики и теории множеств, базирующиеся на понятии нечёткого множества. Применение нечетких множеств в экономическом, финансовом анализе и в современных технологиях управления. Алгоритм по формализации задачи в терминах нечеткой логики.

    презентация, добавлен 29.06.2022

  • Изучение математического значения множества отображения. Анализ симметричности и транзитивности функций. Расчет мощности бесконечного множества. Обзор теоремы подмножеств линейного порядка натуральных чисел. Сопоставление произвольной совокупности.

    лекция, добавлен 18.10.2013

  • Понятие и структура множеств как совокупности объектов, объединенных некоторым признаком, свойством. Их основные элементы и направления математического исследования, способы задания. Изображение множеств и существующие операции, проводимые над ними.

    методичка, добавлен 15.11.2013

  • Элементы, из которых состоит множество. Примеры обозначений с помощью логической символики. Квантор всеобщности и существования. Свойства множеств. Операции логического сложения, умножения, разности. Окрестности точки х как особый вид множества.

    лекция, добавлен 29.09.2013

  • Понятие множества как фундаментального неопределяемого понятия математики. Сущность пустого и универсального множеств. Способы их задания. Свойства операций над множествами, их сравнение. Диаграммы Эйлера как представление отношений между подмножествами.

    презентация, добавлен 19.09.2017

  • Основные топологические понятия; аксиомы топологии и примеры некоторых соотношений в топологических пространствах. Булева алгебра и регулярные замкнутые множества: булево объединение и булево пересечение произвольного семейства элементов булевой алгебры.

    курсовая работа, добавлен 07.07.2012

  • Содержательное сравнение теории множеств с самопринадлежностью (обладающей непротиворечивостью) с более ранними подходами, которые используют ослабление или отрицание аксиомы фундирования. Анализ поиска доказательств непротиворечивости теории множеств.

    статья, добавлен 26.04.2019

  • Типичные ошибки, допускаемые в символической записи на языке теории множеств предложений геометрического содержания. Примеры заданий, направленных на формирование умения корректно использовать символы языка теории множеств при записи предложений.

    статья, добавлен 24.11.2022

  • Понятие множества, его структура и главные элементы, существующие операции и порядок их реализации, способы задания. Сущность и методика пересечения, объединения, вычитания. Механизм и основные правила нахождения декартового произведения множества.

    контрольная работа, добавлен 24.02.2015

  • Описание свойства транзитивности принадлежности для самопринадлежащих множеств. Доказательство теоремы о непротиворечивости теории множеств с самопринадлежностью. Алгебра скобок единого и многого. Отношение части и целого. Приложение к доказательству.

    статья, добавлен 26.04.2019

  • Обозначение множества и его графическое изображение. Операции пересечения, объединения, дополнения и прямого произведения множеств. Их равенство – источник недоразумений. Исследование социального положения жителей села с помощью математической теории.

    творческая работа, добавлен 30.05.2015

  • Проблема сложности вычислений как одна из важнейших проблем в дискретной математики. Множества и основные операции над ними. Основные законы операций над множествами. Прямые произведения и функции. Теорема Кантора. Матричный способ задания множеств.

    реферат, добавлен 16.05.2012

  • Примеры конечных и бесконечных множеств с помощью перечисления или описания. Прямые произведения множеств, сочетаний, размещений, перестановок. Способы представления бинарных отношений. Анализ рефлексивных, симметричных, транзитивных бинарных отношений.

    шпаргалка, добавлен 27.10.2013

  • Понятие и общая характеристика различных типов точечных множеств: ограниченных сверху и снизу, неограниченных. Определение верхней и нижней грани. Расположение точечного множества вблизи какой-либо точки на прямой. Открытые и замкнутые множества.

    курсовая работа, добавлен 19.11.2014

  • Исследование теории графов в 30-е годы ХХ в. Двудольные графы и возможность их применения для наглядного представления паросочетаний. Изучение условия Холла. Трансверсали семейств множеств. Определение степени вершины. Паросочетания специального вида.

    лекция, добавлен 29.09.2013

  • Основные понятия теории множеств. Операции над ними. Свойства алгебраического тождества. Упорядоченные множества элементов. Структура и способы представления многомерных матриц. Правило получения обратной матрицы. Многомерно-матричное дифференцирование.

    реферат, добавлен 16.01.2018

  • Введения понятия алгебры множеств. Необходимость объединять счетные наборы событий в теории вероятностей. Замкнутость множества относительно счетного числа любых других операций над событиями. Составление функций распределения на основе их рядов.

    контрольная работа, добавлен 09.01.2015

  • Пространство элементарных исходов. События в дискретном пространстве. Сумма (объединение), произведение (пересечение), разность событий. Основные свойства операций над событиями. Вероятность в классическом пространстве. Понятие счётного множества.

    презентация, добавлен 22.09.2017

  • Характеристика и сущности теории функций действительного переменного. Знакомство с основными теоремами, их доказательство. Анализ теоремы о произведениях конечного числа счетных множеств. Особенности теоремы, отображающей образ счётного множества.

    контрольная работа, добавлен 25.12.2011

  • Каноническое отображение самопринадлежащих множеств как неподвижных точек отображения множества всех множеств в себя, порождаемых отношением принадлежности (с учетом транзитивности принадлежности объектов, принадлежащих самопринадлежащему объекту).

    статья, добавлен 26.04.2019

  • Современные рассуждения, демонстрирующие противоречивость наивной теории множеств. Предложенный Б. Расселом "парадокс Тристрама Шенди". Нетривиальные следствия аксиомы выбора. Рассмотрение рядов квадратов натуральных чисел, степеней двойки, факториалов.

    статья, добавлен 15.02.2019

  • Анализ идеи системного обобщения понятий математики, в частности теории информации, основанных на теории множеств, заменой понятия множества на содержательное понятие системы. Ее реализация в разработке автоматизированного системно-когнитивного анализа.

    статья, добавлен 25.04.2017

  • Поиск способа представления системы как совокупности взаимосвязанных множеств. Обоснование принципов геометрической интерпретации понятий "элемент системы" и "система". Аналогия между геометрией и теорией информации. Информационные свойства пространства.

    статья, добавлен 26.04.2017

  • Элементы теории множеств, операции над ними. Инъективные и сюръективные отображения. Отношение эквивалентности. Элементы теории кодирования, графов. Представление графов в памяти компьютера. Пример нахождения кода Харари графа. Задачи о раскраске.

    методичка, добавлен 29.09.2017

  • Нахождение функций принадлежности и представление в виде поэлементных суммы множества. Изображение графически их функций принадлежности. Нахождение аналитического выражения для функции принадлежности объединения множеств; геометрическое представление.

    методичка, добавлен 19.03.2024

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.