Асимптотический ряд

Основные понятия, определения и теоремы асимптотической последовательности и асимптотического ряда. Примеры гамма-функций, интегральных дзета-функций Римана и функций ошибок. Общие свойства обобщённого разложения с обычным асимптотическим разложением.

Подобные документы

  • Общее понятие о степенных функциях, их свойства и основные черты. Разновидности графиков степенных функций: прямая, парабола, кубическая парабола, гипербола. Особенности функций с четным и нечетным числом. Преобразования графиков степенных функций.

    презентация, добавлен 02.03.2012

  • Определение основных видов функций, изучение их свойств. Использование аналитического и графического методов задания функций при нахождении ограничений снизу и сверху на множестве; точек максимума и минимума; вычислении наименьшего и наибольшего значений.

    реферат, добавлен 05.10.2009

  • Теории мультипликативных функций, определения и свойства данных функций, методы их суммирования. Рассмотрение результатов суммирования известной функции Эйлера j(n) и Мебиуса. Теорема Мертенса. Определение средних значений функций натурального аргумента.

    дипломная работа, добавлен 29.10.2010

  • Ознакомление с теоремами об устойчивости линейных дифференциальных систем. Анализ устойчивости линейной дифференциальной системы с почти постоянной матрицей. Исследование теоремы Лопиталя. Анализ асимптотической устойчивости дифференциальной системы.

    контрольная работа, добавлен 18.05.2016

  • Определение элементарных функций. Область определения и значения функции. Основные простейшие элементарные функции: линейная, степенная, квадратичная, показательная, логарифмическая, тригонометрическая, oбратная тригонометрическая. Функция и её свойства.

    реферат, добавлен 30.10.2010

  • Определение основных понятий непрерывности функции в точке. Расчет величин прироста аргумента. Арифметические действия элементарных функций. Понятие гиперболических функций и их формулы. Множество и его значение. Точка разрыва и теорема непрерывности.

    лекция, добавлен 26.01.2014

  • Характеристика итерационных методов для сингулярно возмущенных операторных уравнений Фредгольма. Сущность и задачи нетривиального решения. Процесс получения асимптотического разложения. Описание рекуррентных равенств и их порядок использования.

    контрольная работа, добавлен 10.07.2013

  • Понятие числовой функции. Определение числовой последовательности как числовой функции на множестве натуральных чисел. Исследование функций на четность и нечетность. Поиск нулей и промежутков, понятие метода интервалов. Промежутки возрастания функции.

    лекция, добавлен 27.04.2017

  • Анализ функций, не имеющих производной: разрывные и непрерывные; понятия функций; непрерывные функции, не имеющие производной ни в одной точке (функции Ван-дер-Вардена); правая и левая производные и функции комплексного переменного (условие Коши-Римана).

    лекция, добавлен 27.05.2014

  • Рассмотрение определения функции в математическом анализе. Расчет предела функциональной последовательности. Бесконечно малые функции и их основные свойства. Изучение равенства односторонних пределов. Ограничение функций сверху и снизу на множестве.

    презентация, добавлен 16.10.2014

  • Наилучшие приближения непрерывных периодических функций тригонометрическими полиномами и их исследование. Обобщение теоремы Джексона и обобщение известного неравенства С.Н. Бернштейна для производных от тригонометрического полинома. "Обратные теоремы".

    дипломная работа, добавлен 22.04.2011

  • Характеристика теоремы Фока-Куни для обобщения аналитических функций. Описание математических методов получения аналога теоремы Фока-Куни в круге. Анализ критерия разрешимости задачи аналитического продолжения. Характеристика интеграла типа Коши.

    статья, добавлен 26.05.2018

  • Понятие ряда Фурье. Определение коэффициентов, признаки сходимости рядов. Разложение в ряд Фурье периодической, непериодической и тригонометрической функций. Пространство функций со скалярным произведением. Основные типы уравнений математической физики.

    курсовая работа, добавлен 28.10.2015

  • Непрерывность функции в точке и на множестве. Точки разрыва функции и их классификация. Действия над непрерывными функциями. Непрерывность основных элементарных функций. Свойства функций, непрерывных на отрезке, равномерная непрерывность функции.

    лекция, добавлен 10.02.2016

  • Примеры решения типовых задач и задачи для самостоятельного решения. Область определения функции. Выяснение четности (нечетности) функции. Построение графика функции. Пределы функций, раскрытие неопределенности. Преображение графиков элементарных функций.

    практическая работа, добавлен 20.12.2011

  • Исследование понятий о гиперболических функциях, их основных свойствах и графики. Способ разложения этих функций в ряды Маклорена. Использование гиперболических функций при вычислении интегралов дифференциальных уравнений и в теории Относительности.

    курсовая работа, добавлен 22.04.2011

  • Характеристика периодических функций Левитана, анализ их основных свойств и квазиравномерная сходимость. Непрерывность функции с пределом, равным нулю на бесконечности. Понятие асимптотически почти автоморфной и периодической функций, их разница.

    статья, добавлен 22.03.2016

  • Понятие и характерные свойства функционально полных систем булевых функций как совокупности таких функций (f1, f2,… fk), что произвольная булева функция f может быть записана в виде формулы через функции этой совокупности. Принцип ее двойственности.

    реферат, добавлен 30.11.2014

  • История зарождения и развития понятия о степенной функции. Основные свойства и особенности построения графиков степенных функций. Решение задач на построение графиков заданных функций. Исследование степенной функции на монотонность и ограниченность.

    контрольная работа, добавлен 20.01.2018

  • Полиномы Лежандра и Чебышева: отогональность полиномов и их формирование. Ортогональная система функций, построенная на основе полиномов Чебышева, нормирование системы функций, построенной на их основе. Примеры аппроксимации функций в среде MathCad'а.

    курсовая работа, добавлен 09.06.2012

  • Операции над множествами. Понятия и определения отношений и функций. Характеристики графов, алгоритм Форда–Беллмана нахождения минимального пути. Минимальные остовные деревья нагруженных графов. Формулы логики булевых функций, преобразования формул.

    методичка, добавлен 28.06.2013

  • Направления исследования функций многих переменных на безусловный экстремум, а также на условный экстремум. Методика определения координат точек функций, дифференцирование уравнений. Формирование, анализ и оценка соотношений математической связи.

    методичка, добавлен 08.09.2015

  • Определения, обозначения и конкретные случаи размеченных областей. Примеры ориентированных размеченных областей, построенных с применением гармонических функций. Линейное сингулярно возмущенное обыкновенное дифференциальное уравнение первого порядка.

    статья, добавлен 11.11.2018

  • Дискретная (или прерывная) математика как наука. Анализ сущности и особенностей понятий функция, функционал и оператор, применяемых в дискретной математике. Примеры инъекции и композиции функций. Формы задания функций (для унарных и бинарных функций).

    реферат, добавлен 23.01.2018

  • Понятие экстремума, анализ теоремы о пределах функции. Знакомство с правилом нахождения минимальных и максимальных точек. Применение локальной формулы Тейлора. Характеристика экстремумов функций многих переменных. Основные признаки экстремума функции.

    контрольная работа, добавлен 06.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.