Основні поняття й означення теорії складності
Основні підходи до визначення стійкості криптографічних систем і протоколів у теоретичній криптографії. Забезпечення механізмів класифікації обчислювальних задач як головна мета теорії складності. Криптосистема з відкритим ключем, генерування ключа.
Подобные документы
Основні поняття теорії ймовірностей. Види випадкових подій. Статистичне означення ймовірності. Найпростіші теореми теорії ймовірностей. Закон Пуасcона або закон рідкісних подій. Математичне сподівання та характеристики дискретної випадкової величини.
реферат, добавлен 19.07.2017Основні поняття теорії нечітких множин. Означення лінгвістичної змінної та її базової шкали. Визначення функції належності довільної нечіткої множини та основні операції над нечіткими множинами. Опис основних алгоритмів нечіткого логічного виводу.
курс лекций, добавлен 10.04.2011Методи комбінаторної теорії груп та теорії алгебри Лі, а також теорії многочленів над скінченними полями. Історія виникнення ідеї побудови кілець Лі, асоційованих з абстрактними групами. Основні означення та результати щодо комутаторного числення.
автореферат, добавлен 11.10.2011Історія виникнення і розвитку криптографії, класичні шифри. Криптосистема Діффі-Хеллмана. Протокол Фіата-Шаміра. Криптосистема Ель-Гамаля (навчальна). Система Рабіна з використанням модулярної арифметики. Таблиця Віженера для латинського алфавіту.
дипломная работа, добавлен 27.04.2020Аналіз зв’язку класичної теорії ймовірностей, теорії нечітких множин і можливості застосування цієї теорії в економічних цілях. Визначення поняття усередненої міри, ризику та міри ризику на підставі теорії нечітких множин. Властивості функції належності.
статья, добавлен 30.01.2017Поняття про ряди, їх різновиди та відмінні особливості. Основні поняття та означення числових рядів. Знакододатні ряди та достатні ознаки збіжності, абсолютні та умовні. Теорема Абеля та її практичне використання. Головні властивості степеневих рядів.
лекция, добавлен 08.08.2014Основні означення з теорії графів, особливості їх застосування. Способи розв'язання логічних задач за допомогою дерев графів. Розгляд завдань з неоднозначними відповідями і з надлишковими даними. Приклад побудови дерева розбору арифметичного виразу.
курсовая работа, добавлен 16.04.2013Основні поняття теорії ігор, їх класифікація. Матричні ігри для двох осіб та геометрична інтерпретація гри 2х2. Вимірювання економічного ризику за допомогою теорії ігор. Приклади розв’язання задач на вибір оптимальної стратегії в іграх з природою.
курсовая работа, добавлен 10.12.2011Основні положення та означення теорії нормальних алгоритмів А.А. Маркова. Поняття алфавіту нормального алгорифму та підстановки. Означення нормального алгорифму Маркова. Загальні риси всіх алгоритмічних моделей. Еквівалентність алгоритмічних моделей.
реферат, добавлен 31.03.2015Основні поняття і правила обчислення теорії ймовірностей, її предмет та задачі. Події та їх види. Частота і ймовірність подій. Теореми теорії ймовірностей: додавання і добуток подій, множення, теорема гіпотез (формула Бейєса та повної ймовірності).
презентация, добавлен 21.03.2014Огляд літератури із теорії стабілізації динамічних систем. Аналіз асимптотичної стохастичної стійкості динамічних систем з післядією. Умови стабілізації імпульсних ДС з урахуванням марковських збурень. Класифікація задач оптимального управління ДС.
автореферат, добавлен 26.08.2015Особливості розбудови матриці відношення. Основні принципи оперування елементами теорії множин. Алгоритм проведення операцій над множинами, основні властивості відношень і реалізація операцій над множинами засобами програмування за допомогою мови C++.
лабораторная работа, добавлен 28.10.2012Основні напрямки сучасної теорії зображень. Роль теорії матричних задач А.В. Ройтера. Обчислення матричної алгебри Aуслендера для однієї задачі про подібність пари матриць з деякими природними співвідношеннями. Формулювання класифікаційної теореми.
статья, добавлен 04.02.2017Розробка схеми розв’язання та побудова точних розв’язків задач теорії потенціалу для просторових тіл з кутовими точками. Особливості використання інтегральних розвинень по функціях Лежандра типу Мелера-Фока в просторових задачах теорії пружності.
автореферат, добавлен 12.02.2014Основний принцип комбінаторики. Задачі на класичне означення ймовірності. Приклади розв'язку задач на операції з множинами. Застосування аксіом теорії ймовірностей. Умовні ймовірності і незалежні події. Особливості застосування випробування Бернуллі.
контрольная работа, добавлен 07.12.2011Розробка технології аналізу ймовірносно-часових характеристик розподілених сервіс орієнтованих інформаційно-обчислювальних систем. Імітаційне та аналітичне моделювання шляхів вдосконалення технічних засобів та протоколів обміну даними та управління.
автореферат, добавлен 29.07.2015Розвиток теорії апроксимації динамічних систем на стандартному борелівському просторі та канторівській множині за допомогою більш простих систем. Застосування розвинутих методів до задач класифікації індивідуальних динамічних систем. Варіант леми Рохліна.
автореферат, добавлен 25.07.2014Аналітичний метод для дослідження обернених задач розсіяння, що виникають у теорії розповсюдження електромагнітних хвиль. Побудова теорії інтегрування початково-крайових задач. Методи аналітичної факторизації, заснованих на задачі Рімана-Гільберта.
автореферат, добавлен 14.09.2015Походження комплексних чисел. Їх дійсна і уявна частина. Гіперболічні функції та їх зв’язок із тригонометричними функціями. Основні властивості комбінацій. Класичне означення імовірності. Теорема додавання ймовірностей сумісних і несумісних подій.
курс лекций, добавлен 25.01.2014Основні поняття теорії випадкових процесів, його реалізація. Ймовірність випадкового процесу: дискретного, неперервного часу або стану, математичного сподівання та дисперсії, квадратичного відхилення. Властивості кореляційних функцій випадкового процесу.
лекция, добавлен 01.05.2014Метод математичної індукції. Елементи комбінаторики. Елементи теорії імовірності (поняття про випадкову подію). Основні теореми ймовірностей (додавання, множення, формула Бейєса). Повторення випробувань. Формула Бернуллі (дисперсія випадкової величини).
лекция, добавлен 08.08.2014Аналіз алгоритму побудови моделей оптимальної складності, що показав, що найбільш затратними операціями є розв’язання системи лінійних алгебраїчних рівнянь. Обчислення кількості арифметичних операцій, які мають місце при реалізації паралельних алгоритмів.
статья, добавлен 30.01.2017Нові результати про основні алгебричні поняття та кількісні характеристики для бінарних та n-арних ізотопів груп. Перспектива подальшого вивчення n-арних ізотопів груп та розвитку теорії квазігруп при вивченні тотожностей та функційних рівнянь.
автореферат, добавлен 12.02.2014Точний алгоритм поліноміальної складності для спеціального підкласу графів, а для другої наближений алгоритм для довільних ациклічних графів. Виділення підкласів графів, для яких існують точні алгоритми поліноміальної складності розв'язання задачі.
статья, добавлен 02.10.2024Головна особливість узагальнення теореми Фалеса. Вивчення відношень між геометричними фігурами на прикладі найпростішого многокутника. Основна характеристика поняття подібності фігур. Формулювання математичною мовою означення подібних трикутників.
конспект урока, добавлен 07.09.2018