Введение понятия предела в курсе математического анализа (высшей математики) естественнонаучных направлений (кроме физических направлений)

Определение границы числовой последовательности. Рассмотрение понятия предела функции в точке. Проведение исследования непрерывного соответствия между элементами двух множеств на промежутках. Анализ отрезка, содержащего в себе все члены порядка.

Подобные документы

  • Изучение интегральных вычислений в курсе математического анализа. Определение риманового числа. Понятие непрерывной периодической функции. Анализ признаков сходимости ряда. Доказательство теорем о несобственном интеграле непрерывной периодической функции.

    курсовая работа, добавлен 02.10.2021

  • История понятия случайной величины. Закон больших чисел, расширение проблематики, связанной с ним в работах ученых. Введение математического ожидания и дисперсии в теорию вероятностей. Заложение основ теории случайных процессов на базе физических задач.

    реферат, добавлен 29.12.2020

  • Понятия предела функции, замыкания множества и компактности в метрическом пространстве. Теория фильтров при изучении сходимости в топологических пространствах. Рефлексивное и транзитивное отношение предпорядка. Симметричный и антисимметричный предпорядок.

    контрольная работа, добавлен 11.12.2012

  • Главные понятия алгебры множеств. Определение принципа двойственности и соответствия уравнений. Виды графов. Алгоритм поиска максимального потока в сети. Функции логарифмических частотных систем. Построение матричных уравнений и дискретных систем.

    курс лекций, добавлен 06.12.2015

  • Анализ идеи системного обобщения понятий математики, в частности теории информации, основанных на теории множеств, заменой понятия множества на содержательное понятие системы. Ее реализация в разработке автоматизированного системно-когнитивного анализа.

    статья, добавлен 25.04.2017

  • Биография Леонардо Пизано Фибоначчи. Возникновение "задачи о размножении кроликов" - числовой последовательности названной впоследствии "рядом Фибоначчи". Анализ золотосечённой логарифмической последовательности. Применение чисел Фибоначчи в наше время.

    доклад, добавлен 25.02.2014

  • Основные понятия теории множеств. Законы, которым подчиняются операции объединения, перечисления и дополнения множеств. Определение бинарных отношений, свойства операций над отношениями. Элементы теории подстановок. Основные понятия теории графов.

    учебное пособие, добавлен 15.10.2016

  • Поле как множество, содержащее не менее двух элементов, на котором заданы две бинарные алгебраические операции – умножение и сложение. Варианты построения множества рациональных чисел. Элементарное понятие о дробном числе. Введение правил сравнения.

    методичка, добавлен 17.09.2014

  • Методика и этапы решение матричных уравнений. Порядок нахождения предела. Механизм вычисления производной функции. Определение такого положительного числа, чтобы разность между этим утроенным числом и его кубом была бы наибольшей. Уравнения касательных.

    контрольная работа, добавлен 25.03.2011

  • Основные понятия и обозначения, связанные с множествами и операциями над ними. Формула мощности объединения нескольких множеств. Теорема Кантора-Бернштейна и ее доказательства равномощности. Бинарное отношение эквивалентности и порядка. Теорема Цермело.

    курс лекций, добавлен 28.12.2013

  • Математический анализ функции одного переменного. Признаки сходимости рядов со знакопостоянными членами. Теория вероятностей и математическая статистика. Построение эмпирической функции распределения. Постановка задачи математического программирования.

    учебное пособие, добавлен 11.04.2016

  • Определение понятия множеств Г. Кантора, их примеры и обозначения. Операции над множествами: пересечение, объединение, разность и дополнение, их наглядное представление на диаграмме Эйлера-Венна. Равенство, тождественность и эквивалентность множеств.

    презентация, добавлен 10.05.2016

  • Решение практических задач математическими методами путем формулировки задачи, выбора метода исследования полученной математической модели, анализа полученного математического результата. Особенности построения и требования к математическим моделям.

    реферат, добавлен 03.12.2014

  • Определение основных понятий непрерывности функции в точке. Расчет величин прироста аргумента. Арифметические действия элементарных функций. Понятие гиперболических функций и их формулы. Множество и его значение. Точка разрыва и теорема непрерывности.

    лекция, добавлен 26.01.2014

  • Особенности декартовой системы координат в трехмерном пространстве. Понятие предела, непрерывность функции нескольких переменных. Свойства функций непрерывных в ограниченной замкнутой области. Определение частной производной функции нескольких аргументов.

    контрольная работа, добавлен 29.05.2015

  • Виды матриц и операции над ними. Системы линейных алгебраических уравнений. Линейные операции над векторами. Аналитическая геометрия, уравнения плоскости. Кривые второго порядка: эллипс гипербола, парабола. Свойства предела функции, таблица производных.

    курс лекций, добавлен 05.01.2016

  • Понятие линейного, нормированного и предгильбертового пространства. Последовательности точек метрического пространства, предел и непрерывность его отображений. Необходимое условие компактности множеств. Принцип Баноха сжимающих отображений, их свойства.

    лекция, добавлен 08.11.2015

  • Изучение электрической цепи с одной электрической лампой и ключами. Рассмотрение графа как совокупности двух конечных множеств. Характеристика его основных видов. Анализ понятия ранга и цикломатического числа графа. Основы строения матриц инциденций.

    дипломная работа, добавлен 08.02.2015

  • Понятие и структура множеств как совокупности объектов, объединенных некоторым признаком, свойством. Их основные элементы и направления математического исследования, способы задания. Изображение множеств и существующие операции, проводимые над ними.

    методичка, добавлен 15.11.2013

  • Теория графов как один из разделов дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Методика решения задач календарно-сетевого планирования и управления. Сущность алгоритма Форда-Фалкерсона.

    лабораторная работа, добавлен 28.05.2015

  • Изучение теории возвратных последовательностей и возможное применение её части на факультативах в школьном курсе математики. Примеры возвратных задач. Вывод формул вычисления любого члена возвратной последовательности. Базис возвратного уравнения.

    контрольная работа, добавлен 23.09.2009

  • Изучение разного введения понятия "Производной", наглядно-интуитивное введение на пропедевтическом уровне, структура действующей программы. Особенности усвоения понятия, нахождению производных функций и применению данного понятия для решения многих задач.

    статья, добавлен 11.05.2022

  • Составление обобщенной функции Лагранжа. Необходимые условия экстремума первого порядка. Анализ выполнения достаточных условий экстремума. Нахождение минимума функции методом Нелдера–Мида. Определение вершин многогранника сопряженных направлений.

    контрольная работа, добавлен 13.10.2017

  • Применение теории множеств в различных разделах математики. Кардинальные числа и появление теории меры. Сравнительная количественная оценка множеств. Определение понятий длины, площади и объема в геометрии фигур. Развитие теории интеграла и рядов Фурье.

    контрольная работа, добавлен 17.06.2014

  • Отображения и преобразования. Современное определение и основные понятия проективной геометрии на плоскости. Перспективно-аффинное соответствие двух плоскостей. Построение главных направлений. Аналитическая аффинная геометрия. Проективные ряды и пучки.

    учебное пособие, добавлен 31.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.