Основы теории графов
Матрица смежности графа с множеством вершин. Построение ориентированного графа (орграфа) по заданной матрице смежности. Решение задачи линейного программирования с двумя переменными. Условие неотрицательности переменной. Прямая целевой функции на минимум.
Подобные документы
Задача об остовных деревьях с топологическими критериями и интервальными весами. Этапы поиска наилучшего решения интервальной задачи. Численные значения множества допустимых решений и интервальной целевой функции. Формулы для реализации весов ребер графа.
статья, добавлен 22.05.2017Исследование алгоритмов поиска в ориентированных графах, их применение в программах для транспортных и коммуникационных сетей. Способы представления ориентированных графов в виде различных матриц, графически и другими способами с практическими примерами.
курсовая работа, добавлен 23.04.2011- 103. Планарные графы
Определение планарных и плоских графов, простейшие свойства. Жордановая кривая. Формула Эйлера. Плоская триангуляция. Критерий планарности. Теорема Л.С. Понтрягина - К. Куратовского. Алгоритм укладки графа на плоскости. Проверка графов на планарность.
презентация, добавлен 21.09.2017 Сущность истории создания теории графов. Исследование задачи о Кенигсбергских мостах. Особенность изучения хроматических многочленов. Результаты работы жадного алгоритма при выборе разных порядков вершин. Анализ параллельных и распределенных систем.
реферат, добавлен 14.12.2015Граф как система объектов произвольной природы (вершин) и связок (ребер), соединяющих пары этих объектов. Определение связности графа. Нахождение наибольшего числа непересекающихся цепей. Нахождение наибольшего числа непересекающихся по ребрам путей.
реферат, добавлен 18.12.2022- 106. Теория игр
Понятие и отличительные черты нестратегической теории игр, ее характеристика и применение. Значение и описание кооперативной теории игр. Специфика и использование антагонистических и позиционных игр. Решение стандартной задачи линейного программирования.
реферат, добавлен 22.05.2015 Изучение и создание алгоритма решения задачи о выделении минимального остовного дерева. Понятие теории графов. Характеристика алгоритма Прима, Краскала, Борувки. Определение каркаса, алгоритм выделения минимального остовного дерева нагруженного графа.
курсовая работа, добавлен 03.11.2015Нахождение транспонированной матрицы, приведение её к ступенчатому виду элементарными преобразованиями. Составление уравнения касательной к заданной кривой и перпендикулярной прямой. Характеристика заданной функции, схематичное построение её графика.
контрольная работа, добавлен 18.04.2012Определение затрат на осуществление связи при имеющихся параметрах кабелей. Построение вектора-градиента, составленного из коэффициентов целевой функции. Нахождение оптимального решения двойственной задачи по теореме равновесия. Метод идеальной точки.
контрольная работа, добавлен 31.03.2015Рассмотрение примера графа для пояснения логики поиска всех максимальных независимых множеств. Метод генерации всех максимальных независимых множеств графа. Иллюстрация задачи о наименьшем покрытии. Поиск оптимального паросочетания в двудольном графе.
презентация, добавлен 09.09.2017- 111. Теория игр
Математическая теория конфликтных ситуаций или теория игр. Назначение - решение задач в условиях неопределенности. Оптимальная стратегия для каждого игрока. Игровые модели, платёжная матрица, нижняя и верхняя цена игры. Задачи линейного программирования.
курсовая работа, добавлен 08.10.2009 Построение модели составного кластера на один период и составного динамического суперкластера. Изучение методов анализа и визуализации текстов. Построение модели динамического графа референций. Динамический граф референций для корпуса RuNeWC и ASOAIF.
дипломная работа, добавлен 28.08.2016- 113. Теория графов
Главные концепции и содержание теории графов, ее место и значение в современной математической науке. Матрицы, ассоциированные с графами, принципы реализации различных операций с ними. Отличительные особенности и структура ациклических графов, их обходы.
контрольная работа, добавлен 08.02.2015 Получение Л. Эйлером критерия существования обхода ребер графа при решении задачи о Кенигсбергских мостах. Формулировка теоремы для связных ориентированных и неориентированных графов. Пример дерева перебора вариантов. Фундаментальное множество циклов.
презентация, добавлен 09.09.2017- 115. Теория графов
Исследование математической теории о совокупности непустого множества вершин и ребер. Анализ кратности неориентированных и ориентированных дуг. Характеристика понятия эквивалентности при множестве вершин. Обоснование гомеоморфного подразбиения дуги.
лекция, добавлен 18.10.2013 Составление математической модели транспортной задачи. Линейная функция и вид системы ограничений. Решение оптимального и опорного плана транспортной задачи, методы их составления. Построение цикла и определение величины перераспределения груза.
презентация, добавлен 26.01.2013Понятия теории линейного программирования, его элементы, применение для решения прикладных задач производственного и экономического содержания. Формулировка основной задачи, ее геометрическая интерпретация и симплекс-метод и специальные методы решения.
дипломная работа, добавлен 13.12.2013Освоение графического метода решения задач линейного программирования. Оптимальный недельный план производства, при котором прибыль будет максимальной. График оптимизационной задачи. Координаты вершин многоугольника допустимых решений и значения функции.
лабораторная работа, добавлен 11.06.2011Изучение графического метода математического программирования для линейного, нелинейного, дробно-линейного, целочисленного и параметрического программирования. Решение некоторых типов задач в двумерном и трехмерном пространстве графическим способом.
дипломная работа, добавлен 10.07.2011- 120. Графы в математике
Теория графов как способ решения задач. Задачи о кёнигсбергских мостах Эйлера. Способы представления графа. Эйлерова линия, проходящая по всем ребрам в точности по одному разу. Зарождение еще одной области в математики в ходе решения головоломок.
контрольная работа, добавлен 07.11.2013 Постановка, стандартные формы записи задачи линейного программирования, способы их решения. Основные понятия и определения теории графов, сетевая модель как графическая модель комплекса работ. Математическая формализация и алгоритмизация игровых задач.
курсовая работа, добавлен 11.06.2013Методика решения задач линейного программирования графическим методом. В ограничениях задачи замена знаков неравенств на знаки точных равенств и построение соответствующих прямых. Оптимальное решение задачи, определение области допустимых решений.
статья, добавлен 15.07.2018Исследование помеченных связных графов с заданным числом вершин и точек сочленения. Выведение формулы для энумератора разреженных гомеоморфно несводимых графов с заданным цикломатическим числом. Определение их асимптотики и интегральных представлений.
автореферат, добавлен 02.03.2018Опорный план и ограничения транспортной задачи. Математическая модель задачи планирования производства. Алгоритм симплекс-метода и матрица коэффициентов прямых затрат трехотраслевой экономической системы. Принятие решения в условиях неопределенности.
контрольная работа, добавлен 21.01.2014Графы и их использование для описания сложно структурированной информации. Задача нахождения минимального остовного дерева взвешенного неориентированного графа как одна из самых известных алгоритмических проблем комбинаторной оптимизации в математике.
дипломная работа, добавлен 04.12.2019