Теория вероятностей
Случайные события, теоремы сложения и умножения вероятностей. Виды случайных величин. Математическое ожидание и дисперсия дискретной случайной величины. Закон больших чисел. Плотность распределения вероятностей. Нормальное и показательное распределение.
Подобные документы
Равномерное распределение вероятностей. Интегральная кривая распределения Вейбулла. Экспоненциальное распределение Гумбеля. Характеристики случайных функций. Метод рандомизации Монте-Карло. Вероятность редких событий (появление случайного события).
курс лекций, добавлен 27.12.2015Решение задачи с помощью классического определения вероятности. Расчет вероятности события по формуле полиномиального распределения вероятностей. Использование формулы Пуассона для маловероятных событий, теорем умножения и сложения вероятностей.
контрольная работа, добавлен 06.12.2017Теория вероятностей как математический аппарат для изучения закономерностей случайных событий и связанных с ними случайных величин. Использование вероятностных и статистических методов в современной физике, технике, экономке, биологии и медицине.
курсовая работа, добавлен 11.06.2014Смысл математического ожидания и дисперсии в случае дискретных случайных величин. Вид формул для их нахождения путем замены. Функция распределения непрерывной случайной величины. Расчет плотности вероятности, а также вероятности попадания на участок.
презентация, добавлен 01.11.2013Элементарная теория вероятностей. Условная вероятность и независимость событий. Случайные величины и функции распределения. Предельные теоремы в схеме испытаний Бернулли. Проблема статистического вывода, методы оценки параметров. Доверительные интервалы.
курс лекций, добавлен 15.09.2011Классическое определение вероятностей. Искомая вероятность указанного события. Противоположные и несовместные события. Теорема умножения независимых событий. Повторные независимые испытания. Использование интегральной предельной теоремы Лапласа.
контрольная работа, добавлен 20.01.2013Математические законы теории вероятностей. Рассмотрение статистических закономерностей, свойственных массовым явлениям. Сходимость последовательностей случайных величин. Изучение закона больших чисел. Возможности предсказаний массовых случайных явлений.
лекция, добавлен 18.03.2014Математические подходы к определению вероятности, ее роль в науке. Классический подход к теории вероятности, понятие равновозможности. Область применения геометрической вероятности. Доказательства и примеры теорем сложения и умножения вероятностей.
реферат, добавлен 15.06.2010Основные понятия теории вероятностей. Локальная теорема Лапласа, формула Пуассона, Бейса. Случайные величины и законы их распределения. Плотность распределения вероятности непрерывной случайной величины. Среднеквадратическое (стандартное) отклонение.
шпаргалка, добавлен 06.11.2009Системы дискретных и непрерывных случайных величин, составляющие которых дискретны и непрерывны соответственно. Функция распределения системы двух случайных величин, плотность вероятностей. Аппарат числовых характеристик системы случайных величин.
контрольная работа, добавлен 20.09.2013Вероятность случайного события и элементы комбинаторики. Основные теоремы теории вероятностей. Многомерная случайная величина и закон ее распределения. Точечные оценки параметров генеральной совокупности. Гипотеза о равенстве математических ожиданий.
презентация, добавлен 05.10.2014Теория вероятностей как один из разделов математики. Типы события и действия над ними. Случайное событие, его виды. Применение операций сложения и умножения при определении вероятностей. Наглядная геометрическая интерпретация этих понятий, дерево исходов.
реферат, добавлен 10.11.2014Вероятность несовместимых и независимых событий. Пример использования формулы Бернулли. Плотность распределения вероятностей, математическое ожидание, среднее квадратичное отклонение и дисперсия. Интервальный и дискретный ряды распределения частот.
задача, добавлен 20.11.2015Случайные величины. Математическое ожидание дискретной величины. Понятие дисперсии. Характеристика нормального распределения. Его графическое представление. Распределения, отличные от нормального. Эмпирические выбросы. Показатели асимметрии и эксцесса.
методичка, добавлен 24.07.2014Пространство элементарных событий и операции над случайными событиями. Основные элементы комбинаторики. Характеристика непрерывных случайных величин. Применение формулы полной вероятности и формулы Байеса. Закон больших чисел. Плотность вероятности.
учебное пособие, добавлен 29.10.2013Аксиоматика Колмогорова. Основные понятия комбинаторики. Классические теоретико-вероятностные модели. Предельные теоремы в схеме Бернулли. Случайные величины и их распределения. Математическое ожидание и его свойства. Неравенства. Коэффициент корреляции.
учебное пособие, добавлен 25.11.2013Создание гистограммы вероятностей распределения Пуассона, графика функции и плотности распределения с определенным параметром. Нахождение выборочного квадратического отклонения. Построение доверительного интервала, покрывающего математическое ожидание.
творческая работа, добавлен 12.01.2018Понятие о теории вероятностей и математической статистике как о науках. Случайный эксперимент и его элементарные исходы. Классификация случайных событий и действия над ними. Основные теоремы теории вероятностей. Первичная обработка статистических данных.
презентация, добавлен 24.06.2014Понятие случайной величины. Примеры случайной величины, множество значений которой либо конечно, либо счетно. Проведение эксперимента, в результате которого может появиться или не появиться некоторое событие. Закон распределения случайной величины.
лекция, добавлен 27.09.2017Основные этапы развития математики. Особенности математического стиля мышления. Понятие и элементы множества. Случайный эксперимент, элементарные исходы. Сумма, произведение и разность математических событий. Теоремы сложения и умножения вероятностей.
реферат, добавлен 17.03.2015Исторические сведения о возникновении и развитии теории вероятностей. Определение случайного события и условные вероятности. Определение случайной величины и ее числовые характеристики, понятие математического ожидания. Примеры дискретных распределений.
курс лекций, добавлен 08.04.2015Числовые характеристики случайных величин. Порядок создания биноминального распределения. Схемы расчета математического ожидания и дисперсии. Равномерное, показательное (экспоненциальное) и нормальное (Гауссовское) распределение случайных величин.
практическая работа, добавлен 26.11.2013Средняя арифметическая взвешенная, количество величин с одинаковым значением. Таблица Лапласа и линейная связь. Вероятность достоверного события и дисперсия случайной величины. Оценка математического ожидания. Дискретная и непрерывная случайная величина.
контрольная работа, добавлен 30.09.2013Формула полной вероятности. Математическое ожидание, среднеквадратическое отклонение и дисперсия. Дискретная случайная величина. Интегральная функция распределения F(x). Квантили Х для нормального стандартного распределения по указанным вероятностям.
контрольная работа, добавлен 10.12.2013Анализ основных понятий теории вероятностей. Прикладное применение знания теории вероятностей, обзор ее основные видов. Понятие случайного события, логика мышления по закону вероятности. Определение вероятности какого-либо события из повседневной жизни.
доклад, добавлен 13.03.2022