Теория и методика обучения математике

Методика обучения решению математических задач арифметическим способом. Введение иррациональных чисел и показ способов их изображения на числовой прямой. Развитие умений в представлении обыкновенных дробей в виде приближенного значения десятичной дроби.

Подобные документы

  • Изучение метода математической индукции. Понятия тождества, неравенства и делимости. Комбинаторика как наука, изучающая множества, размещение и перечисление их элементов. Алгоритм Евклида и основная теорема арифметики. Числа, дроби и системы счисления.

    учебное пособие, добавлен 28.12.2013

  • Методика введения определений тригонометрических функций углов и изучения тригонометрических функций в курсе алгебры. Тождественные преобразования тригонометрических выражений. Тригонометрические уравнения и неравенства и методика обучения решению.

    реферат, добавлен 06.03.2022

  • Составление "коллекции" простых чисел способом "решето Эратосфена". Формулирование и возможности разрешения проблемы Гольдбаха-Эйлера. Рассмотрение линейных, плоских и телесных фигурных чисел. История многоугольных и дружественных чисел в математике.

    реферат, добавлен 08.12.2017

  • Описание примера использования Р-методологии для решения довольно специфических задач начертательной геометрии. Принципы использования метода как унифицированного инструмента обучения решению разных задач в образовательных учреждениях различных уровней.

    статья, добавлен 18.09.2018

  • Теорема Чевы и Менелая, их особенности. Методика обучения решению задач в период предпрофильной подготовки. Изучение темы "Теорема Менелая и теорема Чевы" в курсе геометрии 10 класса. Применение теорем Менелая и Чевы в решении стереометрических задач.

    презентация, добавлен 20.01.2016

  • Определение эмпирических соотношений, которыми описываются простые числа и закономерности начала числовой оси натуральных чисел. Рассмотрение наличия больших интервалов числовой оси, не содержащих простые числа. Изучение интервалов с нечетными числами.

    статья, добавлен 30.03.2017

  • Характеристика понятия множества, описание операций над множествами. Конечные и бесконечные множества. Счетные и несчетные множества. Анализ рациональных чисел как таких чисел, которые можно записать в виде дроби с целыми числителем и знаменателем.

    реферат, добавлен 22.11.2018

  • История появления проблем простых чисел. Асиптотический Закон рапределения простых чисел в натуральном ряду. Роль простых чисел в математике. "Тернарная" проблема Гольдбаха. Список проблем для Теории чисел, аналогичный списку Гильберта, его описание.

    статья, добавлен 24.08.2020

  • Определение иррациональных уравнений и их математические модели. Измерение отрезков в неограниченном приближении к искомому числу с помощью бесконечных десятичных дробей. Равносильные уравнения и их следствия. Методы решения иррациональных уравнений.

    реферат, добавлен 29.10.2010

  • Бесконечные и конечные цепные дроби. Приближение действительного числа рациональными дробями с заданным ограничением для знаменателя. Квадратические иррациональности и периодические цепные дроби. Представление действительных чисел цепными дробями.

    реферат, добавлен 21.08.2008

  • История математических исследований простых чисел как натуральных чисел, имеющих два различных натуральных делителя - единицу и самого себя. Представление простых чисел в виде значений квадратных многочленов. Описание спирали простых чисел С.М. Улама.

    статья, добавлен 28.03.2019

  • Классификация методов решения обыкновенных дифференциальных уравнений. Общие понятия теории многошаговых методов. Явные и неявные формулы Милна. Практические способы оценки погрешности приближенного решения. Автоматический выбор шага интегрирования.

    контрольная работа, добавлен 02.12.2012

  • Возникновение дробей, их изображение с помощью дробной черты, сравнение по величине эмпирическим методом, сравнением с единицей и путем приведения к общему знаменателю. Дроби как следствие измерения и деления. Числитель, знаменатель и смешанные числа.

    конспект урока, добавлен 02.06.2015

  • Развитие творческого потенциала ученика при изучении математики методом практической работы по системе Л.В. Занкова (работа с текстовыми задачами). Составление обратных задач, сравнение задач с одинаковой фабулой, но различным математическим содержанием.

    контрольная работа, добавлен 21.04.2014

  • Предложение эффективного численного метода решения линейных краевых задач для обыкновенных дифференциальных уравнений второго порядка. Изложение свойстве составной кинематической кривой. Рассмотрение примеров решения краевых задач линейного уравнения.

    статья, добавлен 27.05.2018

  • Изучение особенностей Правильные конечные цепные дроби. Представление рациональных чисел цепными дробями. Разложение действительного иррационального числа в правильную бесконечную цепную дробь. Квадратические иррациональности и периодические цепные дроби.

    курсовая работа, добавлен 09.03.2020

  • Классификация Интернет-ресурсов по математике. Краткое описание математических порталов и сайтов. Рассмотрение страниц материалов олимпиад и конкурсов. Проведение дистанционного, дополнительного обучения. Подготовка к экзаменам и проведение тестирования.

    доклад, добавлен 18.05.2015

  • История возникновения логарифмов. Общие приемы решения задач с неизвестными величинами. Идея логарифма, то есть идея выражать числа в виде степени одного и того же основания Михаила Штифеля. Признание общего понятия иррациональных и трансцендентных чисел.

    статья, добавлен 09.06.2017

  • Обыкновенное дифференциальное уравнение как тождество, связывающее между собой значения независимой переменной, функции и её производных. Методика вычисления задачи Коши. Характеристика основных типов уравнений, которые допускают понижение порядка.

    презентация, добавлен 05.02.2015

  • Биографические сведения о Леонарде Эйлере - идеальном математике XVIII в. Понятие прямой Эйлера как прямой с ортоцентром, центроидом и центром описанной окружности треугольника. Доказательства теоремы о многогранниках. Теория графов и задача Эйлера.

    презентация, добавлен 28.01.2013

  • Поиск новых способов, создание новых методов формирования знаний. Изобретение десятичной позиционной системы записи чисел. Происхождение слова "синус". Происхождение термина "Геометрия". Истоки слова и термина "пирамида". Изменение символа параллельности.

    статья, добавлен 09.04.2019

  • Происхождение и история развития систем счисления, расширение запаса чисел. Эволюция понятия числа, дроби и нуля. Особенности непозиционных систем счисления (римской, древнеегипетской десятичной и унарной), анализ их достоинств и основных недостатков.

    доклад, добавлен 21.12.2011

  • Число как основное понятие математики. Натуральные числа, их функции. Вавилонские шестидесятеричные дроби. Нумерация и дроби в Древней Греции. Развитие идеи отрицательного количества в Европе. Векторные, действительные рациональные и иррациональные числа.

    реферат, добавлен 02.03.2017

  • Практические рекомендации к решению некоторых задач на проецирование геометрических образов. Варианты решений к контрольной работе, методические указания по их выполнению. Методика построения комплексных трехпроекционных чертежей геометрических тел.

    методичка, добавлен 16.11.2013

  • Виды элементарных дробей и необходимость применения разложения дроби на простейшие. Алгоритм метода неопределенных коэффициентов. Использование метода частных значений в случае, если знаменатель представляет собой произведение линейных множителей.

    лекция, добавлен 17.07.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.