Дискретное управление в простейшей математической модели инфекционного заболевания
Рассмотрение простейшей математической модели инфекционного заболевания, которая представляет собой систему нелинейных обыкновенных дифференциальных уравнений с запаздывающим аргументом. Оценка обеспечения энергетически оптимального иммунного ответа.
Подобные документы
Изложение способа формализации математических моделей систем наведения с оптимальным управлением. Разработка обобщенной структуры формализованной математической модели системы наведения. Построение модели ракеты с использованием уравнений в форме Коши.
статья, добавлен 27.02.2019Описание математической модели, представляющей собой описание какого-либо объекта или процесса, выполненное на математическом языке с помощью геометрических фигур, уравнений, соотношений. Метод моделирования на уроках математики, его компоненты.
статья, добавлен 27.01.2021Анализ поведения системы в случае динамических возмущений. Применение новых методов исследования для различных классов объектов. Построение математической модели нелинейных процессов. Создание методологии оценки робастности в нестационарных системах.
автореферат, добавлен 03.02.2018Разработка методики расчета двумерной математической модели взаимодействия с воздушным потоком нескольких ветротурбин с разными расположениями и направлениями их вращения. Теоретическое изучение и проектированию расположении нескольких ветротурбин Дарье.
статья, добавлен 01.02.2019История развития теории обыкновенных дифференциальных уравнений, их значение для решения задач механики. Дифференциальные уравнения первого и высшего порядков, их нормальные системы. Задачи, приводящие к понятию систем дифференциальных уравнений.
учебное пособие, добавлен 30.09.2014Ознакомление с условиями поиска полиномиальной регрессионной математической модели. Вычисления для линейной РОФМ. Формульное определение критериев выделяющегося максимального значения. Промежуточные показатели при расчетах коэффициентов регрессии.
методичка, добавлен 08.06.2015Знакомство с основными особенностями движения сферического клубня по рабочему органу дисковой плоскорешетной картофелесортировки. Рассмотрение способов решения системы дифференциальных уравнений. Анализ математической модели движения клубня по решету.
статья, добавлен 17.06.2021Рассмотрение начальной задачи для систем уравнений и использование развитой методики дополнительного аргумента для решения задачи. Применение развитой методики для доказательства существования решения новых видов векторно-матричных нелинейных уравнений.
статья, добавлен 07.08.2020Характеристика и особенности численного дифференцирования. Рассмотрение исправленного метода Эйлера, блок-схема алгоритма. Применение численного дифференцирования, Решение обыкновенных дифференциальных уравнений первого порядка с начальными данными.
курсовая работа, добавлен 10.06.2021Метод Эйлера как простейший численный метод решения систем обыкновенных дифференциальных уравнений. Описание данного метода, дающего решение в виде таблицы приближенных значений искомой функции, его исправления и модификации. Оценка погрешности.
реферат, добавлен 27.10.2019Аналитические методы решения уравнений математической физики в частных производных. Численные методы решения уравнений матфизики. Дискретизация расчетной области, формирование матрицы неизвестных температур системы линейных уравнений, построение изотерм.
курсовая работа, добавлен 01.04.2022Построение математической модели процесса всплытия подводной лодки, анализ физической сути процесса. Определение параметров и сил, действующих на лодку. Нахождение частных случаев решения задачи методом дифференциальных уравнений, построение графиков.
курсовая работа, добавлен 27.04.2017Изучение основных этапов и принципов построения математической модели эксплуатации сельскохозяйственной техники как сложной технической системы. Использование метода подстановок. Согласия Колмогорова и Пирсона, широко используемые при анализе надежности.
статья, добавлен 29.09.2018Совершенствование методики изучения уравнений как моделей реальных процессов. Теоретические основы математического моделирования, его виды и классификация. Уравнения как математические модели реальных ситуаций. Анализ учебников алгебры 5-9 классов.
дипломная работа, добавлен 05.07.2014Возникновение математических моделей в виде автономных систем обыкновенных дифференциальных уравнений, зависящих от параметров в задачах естествознания. Зависимость скорости изменений некоторых величин, называемых фазовыми, или динамическими переменными.
статья, добавлен 25.12.2017Рассмотрение и анализ сущности популяционной динамики – одного из разделов математического моделирования. Определение коэффициентов колебательного режима системы. Исследование модели В. Вольтерра, как первого примера модели в математической экологии.
статья, добавлен 31.07.2018Рассмотрение свойств особой (неподвижной) точки типа ротор в двумерных неавтономных диссипативных вещественных системах обыкновенных дифференциальных уравнений. Исследование механизма перехода к хаосу в многомерных системах дифференциальных уравнений.
статья, добавлен 15.05.2021Определение корней квадратного уравнения аналитическим способом. Построение графика разрешающей функции в окрестности наибольшего из корней, а также численное определение наибольшего корня с использованием простейшей итерационной формулы первого вида.
методичка, добавлен 12.10.2013Одновременное варьирование всех факторов по определенному правилу и представление математической модели в виде линейного полинома как особенность факторного эксперимента первого порядка. Методика оценки однородности дисперсии по критерию Кохрена.
лабораторная работа, добавлен 28.09.2016Теоретические основы математического моделирования. Классификация математических моделей. Основные этапы моделирования, их характеристика. Медицинское страхование при заболевании туберкулезом. Построение математической модели заболевания туберкулезом.
реферат, добавлен 29.10.2014Анализ приемов нахождения решений дифференциальных уравнений через элементарные или специальные функции. Принцип сжатых отображений. Понятие метрического пространства. Решение задач методами последовательных приближений Пикара, Эйлера, Рунге-Кутта.
дипломная работа, добавлен 21.09.2016Проблема численного решения линейных уравнений. Основные методы решения нелинейных уравнений. Графическая иллюстрация метода половинного деления. Создание функциональной модели нахождения корней уравнения методами Ньютона, хорд и половинного деления.
дипломная работа, добавлен 31.10.2014Характеристика полиномиальной асимптотики решений. Анализ нормальной системы обыкновенных дифференциальных уравнений. Проверка абсолютной сходимости интеграла с помощью функций пространства. Особенность стремления аргумента бесконечности к полиному.
статья, добавлен 03.11.2015Построение математической модели внутренней структуры дисперсных систем. Результаты исследования процесса структурообразования дисперсных систем и влияния различных факторов на поведение данных систем с использованием разработанной математической модели.
автореферат, добавлен 02.05.2018Решение обыкновенных дифференциальных уравнений с заданными условиями на границах интервала и в заданных точках. Метод конечных разностей. Геометрический смысл производной. Метод прогонки, реализующий прямой и обратный ход. Выравнивание системы в столбец.
лекция, добавлен 06.04.2014