Основные понятия в математической логике

Логические связи и отношения, лежащие в основе логического вывода, с использованием языка математики. Объединение множеств. Аксиома Дедекинда. Понятие супремума. Обратная функция. Геометрическая интерпретация. Монотонная последовательность чисел.

Подобные документы

  • Характеристическая функция суммы независимых случайных величин. Центральная предельная теорема. Закон больших чисел в форме Бернулли. Основные задачи математической статистики. Группировка данных по интервалам, определение частот элементов выборки.

    лекция, добавлен 28.09.2017

  • История становления понятия вещественного числа. Конструктивные способы определения вещественного числа. Системы аксиом вещественных чисел. Связь вещественных чисел с рациональными. Обобщение и теоретико-множественные свойства вещественных чисел.

    реферат, добавлен 25.02.2016

  • Определение отсутствия в теории множеств с самопринадлежностью парадокса Мириманова, парадокса Кантора, парадокса Бурали–Форти. Обоснование утверждения о том, что объединение порядковых чисел является порядковым числом - основы парадокса Бурали–Форти.

    статья, добавлен 26.04.2019

  • Геометрическая интерпретация векторного произведения в зеркальном отражении. Главная особенность доказательств коммутативности сложения векторов на плоскости. Основные свойства скалярного отображения. Характеристика аксиомы параллельности Евклида.

    контрольная работа, добавлен 28.04.2016

  • Определение понятия множеств Г. Кантора, их примеры и обозначения. Операции над множествами: пересечение, объединение, разность и дополнение, их наглядное представление на диаграмме Эйлера-Венна. Равенство, тождественность и эквивалентность множеств.

    презентация, добавлен 10.05.2016

  • Правила аксиоматического построения математических теорий. Аксиоматическое построение системы натуральных чисел. Аксиомы Пеано, метод математической индукции. Умножение целых неотрицательных чисел в количественной теории, таблица и законы умножения.

    реферат, добавлен 10.01.2017

  • Предмет и основные методы математической статистики. Ее основные понятия. Эмпирическая функция распределения и гистограмма. Основные понятия выборочного метода. Закон распределения дискретной случайной величины. Понятие выборочного распределения.

    реферат, добавлен 26.03.2010

  • Принципы построения пропозициональной логики. Способы исчисления высказываний с помощью алгебры. Субъектно-предикатная структура утверждений. Методы резолюции в логике предикатов. Функционирование теории множеств в системе аксиом. Виды алгоритмов.

    учебное пособие, добавлен 15.01.2016

  • Основные свойства треугольников. Признаки равенства треугольников. Основная аксиома стереометрии. Углы, проекции, многогранные углы. Функция, однозначная и многозначная функция. Область определения и область значений функции. Функции и их графики.

    лекция, добавлен 22.03.2010

  • Выделение простых чисел как важная задача математики, основные алгоритмы проверки чисел на простоту. Понятие делимости целых чисел, свойства делимости, алгоритм Евклида. Основные критерии простоты целых чисел, свойства и теоремы из теории сравнений.

    курсовая работа, добавлен 03.05.2014

  • История возникновения комплексных чисел, их общая характеристика. Действия над комплексными числами в алгебраической форме. Геометрическая интерпретация комплексного числа, его тригонометрическая, показательная форма. Применение комплексных чисел.

    контрольная работа, добавлен 30.01.2010

  • Аксиомы топологии, примеры топологических пространств. Понятие про открытое и замкнутое множество. Аксиомы булевой алгебры, примеры. Булево объединение и пересечение произвольного семейства элементов алгебры. Понятие про регулярные замкнутые множества.

    курсовая работа, добавлен 10.07.2012

  • Множество как основное понятие математики: пересечение, разность, разбиение и произведение. Простые и составные высказывания. Структура и виды теоремы. Сложение и вычитание, умножение и деление в количественной теории целых неотрицательных чисел.

    шпаргалка, добавлен 19.01.2011

  • Теория множеств. Способы задания, операции над множествами. Основные понятия соответствия и функции. Понятие мультимножества. Основные понятия теории графов, способы их задания. Сильно связанные графы и их компоненты. Планарность и двойственность.

    учебное пособие, добавлен 08.02.2015

  • Программа стандартизации математики. Канторовское определение и понятие множества, разработка аксиоматизации. Обозначение элементов и заключение в фигурные скобки, разделение запятыми. Характеристические условия и форма логического утверждения.

    контрольная работа, добавлен 28.09.2011

  • Множества и операции над ними. Сходящиеся и монотонные числовые последовательности. Предел и непрерывность функции. Бесконечно малые и бесконечно большие функции. Раскрытие неопределенностей, замечательные пределы. Основные свойства непрерывных функций.

    лекция, добавлен 29.09.2014

  • Проблема сложности вычислений как одна из важнейших проблем в дискретной математики. Множества и основные операции над ними. Основные законы операций над множествами. Прямые произведения и функции. Теорема Кантора. Матричный способ задания множеств.

    реферат, добавлен 16.05.2012

  • Сведения из теории множеств. Натуральные и целые числа: отношение эквивалентности, арифметические операции, отношение порядка на множестве. Изучение вещественных чисел. Анализ особенностей введения действительных чисел для студентов и школьников.

    курсовая работа, добавлен 18.05.2016

  • Аксиома выбора как один из важнейших теоретико-множественных принципов. Главная причина отрицательного отношения к принятию аксиомы. Альтернативные формулировки термина. Принцип вполне упорядочивания (теорема Цермело). Общее понятие о максимуме Хаусдорфа.

    контрольная работа, добавлен 18.10.2013

  • Элементы дискретной математики. Сущность математической логики. Операции над множествами. Правила, формулы дифференцирования. Неопределенный интеграл, методы интегрирования. Основы теории вероятностей и математической статистики. Понятие и предел функции.

    учебное пособие, добавлен 03.07.2013

  • Рассмотрены пространственные структуры на примере математики и в приложениях к модальной логике пространства. многозначность понятия "пространства". На примере анализа структуры топологического пространства вводится понятие близости между частями целого.

    статья, добавлен 27.04.2023

  • Основные этапы развития математики. Архимед как пионер математической физики. Машины, построенные с использованием рычага и блока. Внедрение технических изобретений в Римской империи. Открытия Коперника. Роль математики в инженерном образовании.

    реферат, добавлен 10.04.2014

  • Геометрическая теория, основанная на системе аксиом, впервые изложенная в "Началах" математика Евклида (III век до н.э.). Аксиома как "фундамент" для построения доказательств утверждений или теорем. Научные исследования и педагогические заслуги Евклида.

    презентация, добавлен 21.02.2017

  • Определение понятия нечеткого силлогизма как некоторого состоятельного правила вывода для баз фактов в Аристотелевой логике. Построение нечетких силлогизмов для пропозициональной Аристотелевой логики с треугольной нормой Заде. Отношения между множествами.

    статья, добавлен 18.01.2018

  • Теория множеств с самопринадлежностью, свойства структурного изоморфизма при описании бесконечных самоподобных множеств. Анализ и описание свойств структурного изоморфизма, прикладная интерпретация этих свойств на предметной области формальных языков.

    статья, добавлен 26.04.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.