Применение теории игр в образовательном процессе
Изучение игры в нормальной форме, участниками которой являются преподаватель и учащийся высшего учебного заведения. Рассмотрение процесса формирования матрицы выигрышей. Анализ теории игр — математического метода изучения оптимальных стратегий в играх.
Подобные документы
Применение теории вероятности для решения технических задач, характеристика ее основных понятий. Основы теории множеств, алгебра событий. Аксиомы теории вероятностей, ее правила. Теорема сложения и умножения вероятностей. Формула полной вероятности.
лекция, добавлен 30.11.2016Рассмотрение основных типов соединений в комбинаторике. Теорема сложения вероятностей совместных событий. Рассмотрение функции распределения в теории вероятностей. Вариационные ряды и их характеристика. Свойства эмпирической функции распределения.
реферат, добавлен 18.04.2016Стандартные сведения из теории бинарных квадратичных форм и алгебры матриц второго порядка и взаимосвязь понятий вектор-матрицы второго порядка и бинарной квадратичной формы. Идея дискретного эргодического метода на модельном примере. Ключевая лемма.
автореферат, добавлен 16.02.2018Ценность теории вероятностей для общего образования. Краткая историческая справка появления азартных игр, применение теории в них. Сущность закона Бернулли. Художественная правда и вероятность сложного события. Краткая характеристика теории рекламы.
доклад, добавлен 21.02.2013Эквивалентность матриц, понятие унимодулярных матриц. Связь подобия числовых матриц с эквивалентность их характеристических матриц. Приведение матрицы к жордановой нормальной форме и особенности минимального многочлена. Решение типовых матричных задач.
дипломная работа, добавлен 20.03.2016Систематическое изучение алгебраических кривых. Основные этапы возникновения и развития теории особых точек плоских кривых с момента ранних упоминаний о них до конца XIX в. Изучение процесса проникновения полученных результатов в учебную литературу.
статья, добавлен 26.04.2019История возникновения теории графов и способы их представления в информатике. Определение понятия матрицы смежности и инцидентности. Маршрут как последовательность ребер, в которых каждые два соседних ребра имеют общую вершину. Гамильтонов и Эйлеров цикл.
презентация, добавлен 28.02.2012Рассмотрение математических закономерностей, лежащих в основе теории оптимизации. Изучение ряда содержательных и формализованных задач оптимизации. Определение этапов инженерного проектирования. Анализ процесса построения математической модели системы.
контрольная работа, добавлен 01.04.2020Анализ результатов асимптотической теории с данными вычислительного эксперимента при различных значениях малого параметра. Рассмотрение внутреннего и внешнего магнитных фронтов. Изучение процесса установления конфедеративного распределения власти.
автореферат, добавлен 02.03.2018Особенности изучения воздействия природных и техногенных катастроф на окружающую среду. Применение детерминированного подхода математического моделирования при исследовании загрязнения природы. Сравнение полученных данных с допустимыми концентрациями.
контрольная работа, добавлен 25.12.2014Пьер де Ферма - французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел, оптики, исчислении бесконечно малых величин. Краткая биография математика. Формулировка Великой теоремы Ферма.
презентация, добавлен 01.04.2012Сущность теории формирования образов в матричной форме с помощью теоремы Габора. Анализ формульного выражения волнового уравнения. Исследование фазового пространства в геометрической оптике по принципу Ферма. Определение координат и индекса луча.
статья, добавлен 18.10.2013Определения и теоремы теории графов, подграфы. Операции над графами и степени их вершин. Цепи, циклы и компоненты. Применение теории графов в школьном курсе математики, в задачах управления дорожным движением, химии, биологии, физике. Графы и информация.
курсовая работа, добавлен 22.06.2014Определение матрицы и арифметические операции над матрицами. Матричное представление линейных уравнений. Используемые инструменты MathCAD для вычислений с матрицами. Формирование уравнений цепи на основе теории графов. Топологические матрицы графа.
курсовая работа, добавлен 28.04.2015Теория игр - раздел математики, изучающий конфликтные ситуации на основе их математических моделей. Оптимальная стратегия для каждого игрока. Признаки классификации игры. Решение матричных игр в чистых и смешанных стратегиях. Основная теорема теории игр.
контрольная работа, добавлен 24.10.2014Характеристика математической модели реальной конфликтной ситуации. Особенность формализации игры. Главный анализ нижней и верхней цены игрового процесса. Седловая точка в платежной матрице. Решение системы в смешанных стратегиях геометрическим методом.
реферат, добавлен 17.06.2015Понятие теории игр как теории математических моделей принятия решений в условиях неопределенности, столкновения, конфликтных ситуациях. Неформальное описание игр и некоторые примеры: игры двух лиц с нулевой суммой, с седловой точкой. Смешанные стратегии.
курсовая работа, добавлен 21.10.2013Методы исследования древних и современных азартных игр. Нахождение наиболее выгодных комбинаций для игрока путем применения формулы для исчисления математического ожидания. Создание программы для вычисления математического ожидания азартных игр.
презентация, добавлен 06.05.2014Изучение понятия и видов матрицы, рассмотрение алгоритма решения систем линейных уравнений в матричной форме. Исследование свойств пределов функций и примеров их нахождения. Характеристика основных задач, инструментов и методов аналитической геометрии.
реферат, добавлен 02.06.2014Рассмотрение систем линейных уравнений. Общие определения, связанные с понятием матрицы. Алгоритмы составления обратной матрицы. Сложение, умножение матриц на число, обращение и транспонирование матрицы. Сочетательный и переместительный законы.
лекция, добавлен 18.04.2014Применение метода, основанного на свойствах симметрических многочленов для решения различных алгебраических задач. Основные понятия теории симметрических многочленов и применение их в решении неравенств, доказательстве тождеств и систем уравнений.
курсовая работа, добавлен 23.04.2014- 97. Теория графов
Основные понятия теории графов. Алгоритм построения эйлерового пути. Теория графов как область дискретной математики, особенностью которой является геометрический подход к изучению объектов. Задача коммивояжера как одна из задач теории комбинаторики.
реферат, добавлен 18.03.2010 Ознакомление с формулами прогрессии многочленов второй степени. Рассмотрение процесса построения трапеций из формул многочленов. Определение чисел, которые принадлежат прогрессии многочлена третьей степени. Изучение и анализ процесса расписания трапеции.
статья, добавлен 30.03.2017- 99. Теория графов
Сущность теории графов – как области дискретной математики, особенностью которой является геометрический подход к изучению объектов. Основные термины и теоремы теории графов, способы и методы их задания: геометрический, матрица смежности и инцидентности.
контрольная работа, добавлен 03.04.2013 Формульное выражение метода вычитания и умножения матриц на число. Возведение математического объекта в степень. Транспортирование единичных детерминант на число. Нахождение множественных характеристик квадратной матрицы второго и третьего порядков.
презентация, добавлен 15.03.2014