Элементы теории поля

Понятие и сущность гладкой поверхности, порядок и принципы определения ее площади. Вычисление поверхностных интегралов первого и второго порядка. Скалярное поле как совокупность двух множеств: множества точек пространства и соответствующих чисел.

Подобные документы

  • Объём цилиндрического тела. Примеры вычисления двойных интегралов. Приложения двойных интегралов к задачам механики. Вычисление площадей и объёмов с помощью двойных интегралов. Вычисление площадей поверхностей с помощью двойного интегрирования.

    реферат, добавлен 12.03.2010

  • Геометрический вид эллипсоида, его каноническое уравнение. Понятие однополосного и двуполостного гиперболоида, его свойства. Особенности сечения эллиптического и гиперболического параболоида заданными плоскостями. Конус второго порядка, его свойства.

    реферат, добавлен 20.11.2013

  • Программа стандартизации математики. Канторовское определение и понятие множества, разработка аксиоматизации. Обозначение элементов и заключение в фигурные скобки, разделение запятыми. Характеристические условия и форма логического утверждения.

    контрольная работа, добавлен 28.09.2011

  • Анализ функции на экстремум. Частные производные первого и второго порядка. Разложение Тейлора до квадратичного члена включительно в окрестности двух точек. Проверка аналитических преобразований. Ряд Тейлора в матричной форме. Выражение вектор-градиента.

    контрольная работа, добавлен 22.01.2013

  • Определение отсутствия в теории множеств с самопринадлежностью парадокса Мириманова, парадокса Кантора, парадокса Бурали–Форти. Обоснование утверждения о том, что объединение порядковых чисел является порядковым числом - основы парадокса Бурали–Форти.

    статья, добавлен 26.04.2019

  • Исследование формы данной поверхности методом сечений и построение сечения. Анализ кривой второго порядка. Нахождение фокусов, директрис, эксцентриситета и асимптот данной кривой второго порядка. Вывод уравнения осей канонической системы их координат.

    курсовая работа, добавлен 30.10.2010

  • Понятие и назначение определителей, основные положения их теории, методы вычисления и свойства. Минор и алгебраическое дополнение элемента определителя. Метод эффективного понижения порядка. Сущность матриц и порядок проведения операций над ними.

    контрольная работа, добавлен 26.07.2009

  • Вычисление площади плоских фигур при помощи интегралов. Нахождение объема тела, длины дуги, площади поверхности вращения. Определение статических моментов, центра тяжести плоских фигур, координат центра тяжести кривых с помощью определенного интеграла.

    методичка, добавлен 14.12.2016

  • Исследование функции многих переменных. Понятие множества, расстояние в нём. Характеристика метрического пространства. Сфера как множество точек евклидова пространства, находящихся от некоторой точки на постоянном расстоянии. Бесконечномерная сфера.

    контрольная работа, добавлен 25.10.2010

  • Три вида уравнений второго порядка, допускающих понижение степени. Порядок введения новой функции. Условие преобразования исходного уравнения в неполное уравнение первого порядка. Пример решения дифференциального уравнения заданного вида, расчет функции.

    презентация, добавлен 17.09.2013

  • Основные свойства множеств с самоприрадлежностью. Бесконечно малая величина в математике. Множество, содержащее все множества, задаваемое непредикативной схемой свёртывания. Использование бесконечных, недостижимых последователей в математических теориях.

    статья, добавлен 26.04.2019

  • Обыкновенные дифференциальные уравнения (ОДУ) первого порядка, разрешенные относительно производной. Интегрирование ОДУ первого порядка. Доказательство теоремы Коши-Пикара о существовании и единственности решения задачи Коши для ОДУ первого порядка.

    курсовая работа, добавлен 13.11.2013

  • Каноническое уравнение, определяющее положение эллипсоида в системе декартовых прямоугольных координат. Сущность и характеристика гиперболоида и параболоида. Особенности преобразования пространства, которое называется равномерным сжатием (растяжением).

    реферат, добавлен 22.10.2011

  • Докозательство ведется применительно к плоскостной координатной системе xOy, т.е. при двух координатах Ox и Oy. Надобность в третьей и последующих координатах отпадает. Элементы xn и yn являются составными частями соответствующих числовых рядов.

    статья, добавлен 17.07.2008

  • Невырожденные матрицы второго порядка. Теорема о разложении матрицы в линейную комбинацию ее сопряжённых корней. Условие идемпотентности квадратных матриц второго порядка. Нелинейные системы уравнений второго порядка, задаваемые матричными уравнениями.

    научная работа, добавлен 04.05.2012

  • Вещественное число порядка как класс эквивалентности, если между элементами этих множеств можно установить взаимно однозначное соответствие. Построение вещественных чисел исходя из рациональных чисел согласно теории немецкого ученого Георга Кантора.

    статья, добавлен 29.03.2019

  • Элементы теории множеств, операции над ними. Инъективные и сюръективные отображения. Отношение эквивалентности. Элементы теории кодирования, графов. Представление графов в памяти компьютера. Пример нахождения кода Харари графа. Задачи о раскраске.

    методичка, добавлен 29.09.2017

  • Окружность - замкнутая плоская кривая, все точки которой одинаково удалены от центра. Изучение многих свойства кривых второго порядка при помощи характеристической квадратичной формы, соответствующей уравнению кривой. Классификация кривых второго порядка.

    реферат, добавлен 26.03.2009

  • Основные свойства определенного интеграла. Вычисление площадей плоских фигур, длины дуги кривой, объемов тел, площадей поверхностей. Признаки сравнения для несобственных интегралов первого, второго рода. Формула Ньютона-Лейбница. Интегрирование по частям.

    учебное пособие, добавлен 19.12.2013

  • Элементы векторной алгебры. Басизы и координаты. Скалярное произведение. Прямые на плоскости и в пространстве. Замены координат. Конические сечения: эллипс, гипербола, парабола. Теоремы единственности для кривых второго порядка. Пополнение плоскости.

    курс лекций, добавлен 10.09.2016

  • Определение основных понятий числовых множеств. Граничная точка и граница множества, соединения и бином Ньютона, а также треугольник Паскаля. Характеристика комплексных чисел и операции над ними. Формула Муавра и извлечение корня из комплексного числа.

    реферат, добавлен 17.01.2011

  • Понятие множества как фундаментального неопределяемого понятия математики. Сущность пустого и универсального множеств. Способы их задания. Свойства операций над множествами, их сравнение. Диаграммы Эйлера как представление отношений между подмножествами.

    презентация, добавлен 19.09.2017

  • Характеристика диаграммы Эйлера-Венна для пересечения двух множеств. Различие между арифметическим сложением и объединением. Методика определения локального коэффициента эмерджентности Хартли. Проблема оценки абсолютной величины системного эффекта.

    статья, добавлен 27.04.2017

  • Понятие и общая характеристика различных типов точечных множеств: ограниченных сверху и снизу, неограниченных. Определение верхней и нижней грани. Расположение точечного множества вблизи какой-либо точки на прямой. Открытые и замкнутые множества.

    курсовая работа, добавлен 19.11.2014

  • Понятие линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Неравенство Коши-Буняковского, неравенство треугольника и множества: связные, несвязные, ограниченные, неограниченные. Замкнутость и компактные множества.

    лекция, добавлен 21.09.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.