Винесення спільного множника за дужки
Формування уявлення про дію розкладання многочлена на множники. Розподілення многочлен методом винесення спільного множника за дужки та послідовність дій для виконання розрахунку. Мотивація навчальної діяльності на уроці математики та розв’язування вправ.
Подобные документы
Понятие и типы многочленов. Кольцо симметрических многочленов. Наиболее общий способ получения симметрических многочленов, формулирование теоремы. Доказательство существования многочлена с использованием принципа математической индукции, результант.
курсовая работа, добавлен 18.03.2013Конечные суммы и их свойства, декартовая и полярная система координат. Комплексные числа и понятие многочлена. Проекция вектора и ее свойства, аналитическая геометрия на плоскости. Канонические уравнения линий второго порядка, матрицы и действия над ними.
курс лекций, добавлен 20.08.2017Поняття оберненої функції. Властивості тригонометричної аркфункції, застосування її властивостей до розв'язування вправ. Утворення назви оберненої тригонометричної функції. Графіки функції, тригонометричні рівняння. Обчислення арккосинуса від'ємних чисел.
презентация, добавлен 14.11.2018- 104. Многочлени Чебешева
Відхилення многочлена Чебишева n степеню від нуля в області неперервних функцій. Властивість многочлену Чебешева. Теорема Ролля. Ряд Фур’є функції. Многочленни які найменше відхиляються від нуля в метриці. Многочлени Лежандра. Квадратична формула Гауса.
контрольная работа, добавлен 03.04.2012 - 105. Теория многочленов
Основная теория алгебры. Корни многочлена и его производной. Свойства неприводимых многочленов. Алгоритмы разложения на неприводимые множители. Формула обращения Мёбиуса. Теоремы дополнения, сложения аргументов и умножения. Арифметические свойства чисел.
книга, добавлен 28.12.2013 - 106. Формула Тейлора
Дослідження особливостей формули Тейлора із залишковим членом у формі Лагранжа. Аналіз тейлорової формули для многочлена. Розгляд розвитку основних елементарних функцій в ряд Маклорена. Вивчення процесу застосування почленного диференціювання рядів.
курсовая работа, добавлен 14.12.2015 Методика определения многочлена Гегенбауэра. Специфические особенности использования неванлинновских характеристических уравнений для нахождения дельта-субгармонических функций. Алгоритм разложения в ряд Тейлора выражения с центром в нуле функции.
статья, добавлен 30.10.2016Опис класів, розкладених на унітальні множники матричних многочленів. Оцінка числа дільників та факторизацій матричних многочленів. Розклад матричних многочленів у добуток довільного числа унітальних нерозкладних множників, зокрема, у їх добуток.
автореферат, добавлен 28.08.2014Исследование периодической функции, ее разложение в ряд Фурье. Вычисление значений тригонометрических полиномов в заданных точках. Построение графика многочлена третьей и восьмой степени. Определение погрешностей и расчет среднеквадратичных коэффициентов.
задача, добавлен 23.11.2016- 110. Матричный анализ
Алгоритм определения функции от матриц, их значения на спектре, свойства и доказательства. Построение интерполяционного многочлена Ланганжа-Сильвестра. Теорема Фробениуса-Перона. Анализ эрмитовых и квадратичных матриц. Спектральное разложение функции.
реферат, добавлен 30.10.2010 - 111. Теорема Виета
Жизнь и деятельность Франсуа Виета. Анализ формул, выражающих коэффициенты многочлена через его корни. Разложение квадратного трёхчлена с помощью формулы Виета. Решение квадратного уравнения путем подбора его корней. Характер решения задачи в общем виде.
контрольная работа, добавлен 11.10.2013 Действия с линейными операторами. Произведение оператора на число. Результат последовательного применения на вектор-прообраз х в пространстве Х. Изучение характеристического многочлена матрицы. Собственные векторы и числа, системы линейных уравнений.
лекция, добавлен 26.11.2013Построение и анализ многочлена Тейлора. Примеры разложения функции по формуле Маклорена. Степенной порядок малости. Определение степени роста бесконечно большой величины в окрестности точки разрыва. Расчёт асимптоты графика функции на бесконечности.
презентация, добавлен 26.09.2017Приклади розв’язування типових завдань для учнів 6 класу. Розв’язок задач за допомогою пропорцій. Визначення прямо пропорційних и обернено пропорційних величині і основні їхні відмінності. Розв'язок обернено пропорційних величин складанням пропорції.
задача, добавлен 18.09.2018Характеристика нової модифікації з пам’яттю розв’язування задач мінімізації, за рахунок використання ідеї трикоркових ітераційних методів. Обґрунтування збіжності методу, практична реалізація і проведення порівняння з трикроковим методом Ньютона.
статья, добавлен 30.01.2017Метод Ньютона - универсальный способ нахождения границ многочлена. Раскрытие схемы Горнера. Доказательство теоремы Штурма. Сущность алгоритмов итераций, половинного деления, хорд и касательных. Решение задач на вычисление уравнений высших степеней.
курсовая работа, добавлен 06.01.2014Схема Гаусса с выбором главного элемента. Метод единственного деления. Метод квадратного корня. Метод Халецкого. Итерационные методы. Методы получения характеристического многочлена. Частичная проблема собственных значений. Метод вращения с преградами.
методичка, добавлен 15.09.2012Систематизація відомих алгоритмів розв’язування задач адаптивної ідентифікації й керування та їх модифікація. Побудова ітераційного, рекурентного алгоритмів оцінки параметрів і розв’язання питання про існування та єдиність розв'язку узагальненої задачі.
автореферат, добавлен 29.07.2014Розв’язок задачі лінійного програмування графічним методом. Складання двоїстої задачі до задачі, визначеної умовою попереднього завдання, знайдення її розв’язок двоїстим симплекс-методом. Побудування опорних планів перевезень методом "подвійної переваги".
контрольная работа, добавлен 12.06.2014- 120. Властивості рівнянь
Вироблення вмінь застосування властивостей рівносильності рівнянь. Приклади розв'язування рівнянь, що містять дроби (раціональні або звичайні). Завдання на виконання множення обох частин рівняння на одне й те саме число та позбавлення дробових чисел.
конспект урока, добавлен 26.09.2018 Схема Горнера как общепринятый способ вычисления многочленов. Открытие в 1955 году универсальной схемы нового типа для многочлена шестой степени. Общая универсальная схема с предварительной обработкой коэффициентов. Параметры универсальной схемы.
контрольная работа, добавлен 14.08.2013Аналіз періодичних режимів нелінійних електричних кіл. Розгляд проблеми розрахунку стаціонарних режимів в нелінійних електричних колах з реактивними елементами, які знаходяться під дією періодичного збурення. Основні методи розв'язування крайових задач.
статья, добавлен 01.03.2016- 123. Метод Гаусса
Сутність і зміст методі Гауса, напрямки та сфери його практичного застосування: розв’язання загальної системи лінійних рівнянь, зведення до східчастого виду послідовним застосуванням елементарних перетворень. Зв'язок з розкладанням матриці на множники.
контрольная работа, добавлен 17.06.2015 Ознакомление с формулами прогрессии многочленов второй степени. Рассмотрение процесса построения трапеций из формул многочленов. Определение чисел, которые принадлежат прогрессии многочлена третьей степени. Изучение и анализ процесса расписания трапеции.
статья, добавлен 30.03.2017Виконання математичних розрахунків, розв’язування рівнянь й систем рівнянь, робота з матрицями, побудова графіків за допомогою математичного пакету MathСad. Обчислення арифметичних виразів. Внесення змінних, що приймають дискретні значення з проміжку.
лабораторная работа, добавлен 11.03.2011