Условия существования и асимптотика некоторого класса решений дифференциальных уравнений второго порядка
Асимптотические представления некоторых типов решений одного класса нелинейных неавтономных дифференциальных уравнений второго порядка и достаточные условия существования таких решений. Медленно меняющаяся функция. Применение правила Лопиталя.
Подобные документы
Методы решения нелинейных и дифференциальных уравнений и интерполяции функций. Численные методы решения некоторых математических и инженерных задач, программное обеспечение, их реализующее. Использование среды математического моделирования Matlab.
курсовая работа, добавлен 09.02.2019Дифференциальные уравнения первого порядка. Метод изоклин как метод приближенного решения задачи Коши. Использование метода изоклин как инструмента исследования поведения решений. Изображение областей характерного поведения интегральных кривых.
статья, добавлен 13.02.2017Сущность и понятие поверхности второго порядка, параболоид вращения. Схема вычислений эллиптического, параболического, гиперболического цилиндра. Конус второго порядка, расчет однополостного гиперболоида. Характеристика и применение метода сечений.
презентация, добавлен 14.10.2017Рассмотрение плана проведения семинарских занятий. Анализ алгебраических поверхностей и их классификация. Приведение уравнений поверхностей второго порядка к каноническому виду. Исследование асимптотических направлений, пересечений, касаний, особых точек.
методичка, добавлен 25.12.2014Рассмотрение свойств особой (неподвижной) точки типа ротор в двумерных неавтономных диссипативных вещественных системах обыкновенных дифференциальных уравнений. Исследование механизма перехода к хаосу в многомерных системах дифференциальных уравнений.
статья, добавлен 15.05.2021Задача Шварца для вектор-функций, аналитических по Дуглису. При выполнении определенных условий на матрицу она сведена к задаче Дирихле для равносильной ей системы однородных линейных дифференциальных уравнений в частных производных второго порядка.
статья, добавлен 31.05.2013Разные типы решений задачи Коши. Применение математической модели недемпфированного нелинейного осциллятора для анализа свойств численных методов. Решение уравнения Дуффинга. Локальная и глобальная погрешности при решении задач гармонического осциллятора.
статья, добавлен 06.11.2018Общая теория кривых второго порядка. Определение зависимости типа кривой от параметра с помощью инвариантов. Определение эксцентриситета, фокусов, директрис, асимптот данной кривой второго порядка. Построение и исследование поверхности второго порядка.
курсовая работа, добавлен 22.04.2011Численный эксперимент геометрической интерпретации трехдиагональных систем. Установление однозначной разрешимости в алгоритмах сплайновых аппроксимаций, при решении краевых задач для дифференциальных уравнений второго порядка и математической физики.
статья, добавлен 28.01.2019Построение уравнений прямой с направляющим и нормальным вектором. Условия перпендикулярности вектора. Построение уравнения прямой с угловым коэффициентом. Поворот и параллельный перенос системы координат. Векторная функция скалярного аргумента.
презентация, добавлен 06.09.2017Рассмотрение уравнений второго порядка, разрешенных относительно второй производной. Формулировка и доказательство теоремы Коши (о существовании и единственности решения дифференциального уравнения). Геометрический смысл теоремы, ее общее решение.
презентация, добавлен 17.09.2013Изучение краевых задач для обыкновенных дифференциальных уравнений и для уравнений с частными производными. Алгоритмы методов численного решения систем нелинейных уравнений, согласно которым произведен поиск корней типовой для прикладных задач системы.
статья, добавлен 07.08.2020Точка покоя системы двух нелинейных обыкновенных дифференциальных уравнений первого порядка. Исследование устойчивости стационарных состояний системы уравнений. Анализ рисунков фазовых портретов соответствующей динамической системы в программе Maple.
статья, добавлен 16.05.2016Формы, методы и средства интегрирования дифференциальных уравнений с помощью рядов. Использование признака Лейбница для исследования сходимости знакочередующихся рядов. Применение интегрирование при решении уравнений Эйри и Бесселя, Тейлора и Маклорена.
курсовая работа, добавлен 09.07.2015Применение дифференциальных уравнений в различных областях науки. Исторические личности и этапы развития дифференциальных уравнений. Практическое применение их в медицине, при создании аппарата "искусственная почка". Дифференциальные уравнения в биологии.
презентация, добавлен 07.05.2020Алгебраическое дополнение элемента в определителе матрицы. Построение пространства решений однородной системы трех линейных уравнений с четырьмя неизвестными. Вычисление предела функции. Использование правила Лопиталя для устранения неопределенности.
контрольная работа, добавлен 25.03.2014Общие решения дифференциальных уравнений первого и второго порядка. Исследование на абсолютную и условную сходимость знакочередующегося ряда. Поиск области сходимости степенного ряда. Определение теории вероятности изготовления детали, выигрыша в лотерее.
контрольная работа, добавлен 05.02.2015- 93. Численные методы
Понятие и типы погрешности: относительная и абсолютная, их определение. Численные методы решений трансцендентных и алгебраических уравнений. Сущность интегрирования. Решение начально-краевых задач для дифференциальных уравнений в частных производных.
учебное пособие, добавлен 02.05.2013 Определение линейных дифференциальных уравнений. Теорема существования и единственности решения задачи Коши. Уравнения с разделяющимися переменными. Метод Лагранжа и Эйлера. Локальная и интегральная теоремы Лапласа. Формула полной вероятности Байеса.
шпаргалка, добавлен 02.02.2016Изучение осцилляционных свойств решений различных классов линейных, нелинейных, интегро-разностных и интегро-дифференциально-разностных уравнений с конечными разностями первого порядка. Осцилляция решений нелинейного дифференциально-разностного уравнения.
статья, добавлен 15.05.2016Общая постановка задачи решения обыкновенных дифференциальных уравнений. Метод Адамса для решения систем обыкновенных дифференциальных уравнений. Анализ погрешности, основные достоинства и недостатки метода Адамса решения дифференциальных уравнений.
курсовая работа, добавлен 11.06.2014Наличие высокого порядка аппроксимирующих формул - одна из наиболее специфических особенностей современных численных алгоритмов решения задачи Коши. Характеристика и методика расчета явных экстраполяционных уравнений Адамса-Башфорта третьего порядка.
курсовая работа, добавлен 27.11.2017Применение математических методов в деятельности среднего медицинского персонала. Линейность или нелинейность дифференциальных уравнений. Дифференциальные уравнения с разделяющимися переменными. Моделирование с применением дифференциальных уравнений.
реферат, добавлен 19.01.2015Общие понятия, определения и примеры дифференциальных уравнений. Дифференциальные уравнения I порядка, задача Коши. Уравнения с разделяющимися переменными, линейные уравнения. Теорема существования и единственности решения дифференциального уравнения.
курсовая работа, добавлен 16.04.2015Дифференциальные уравнения первого порядка: уравнения в частных производный и обыкновенные дифференциальные уравнения. Понятие интегральной кривой. Связь между геометрическая интерпретация уравнения и его решения. Теорема существования и единственности.
курсовая работа, добавлен 11.04.2014