Преобразование краевой задачи проникновения импульсного магнитного поля в движущуюся проводящую оболочку
Методика определения напряженности осевого импульсного магнитного поля, проникшего в движущуюся проводящую оболочку, при помощи дифференциального уравнения первого порядка. Решение краевой задачи для уравнения проникновения поля в частных производных.
Подобные документы
- Обыкновенные дифференциальные уравнения (ОДУ) первого порядка, разрешенные относительно производной. Интегрирование ОДУ первого порядка. Доказательство теоремы Коши-Пикара о существовании и единственности решения задачи Коши для ОДУ первого порядка. 
 курсовая работа, добавлен 13.11.2013
- Понятие дифференциальных уравнений первого порядка. Частный интеграл как общее и частное решение уравнения, записанное в неявной форме; задача Коши. Уравнение показательного роста. Дифференциальное уравнение закона радиоактивного распада Резерфорда. 
 реферат, добавлен 22.11.2013
- Характеристика свойства полей: потенциальное, соленоидальное и гармоническое (уравнение Лапласа) векторное поле; векторный потенциал поля; центральные скалярные и векторные поля. Задачи Дирихле, Неймана. Построение векторных полей по дивергенции и ротору. 
 реферат, добавлен 20.03.2014
- Понятие дифференциального уравнения. Определение функций производного порядка. Линейные дифференциальные уравнения с постоянными коэффициентами. Решение системы по методу Эйлера. Геометрическая интерпретация комплексных чисел и условия Коши-Римана. 
 лекция, добавлен 22.07.2015
- 80. Об одной нелокальной краевой задаче для гиперболического уравнения, вырождающегося внутри областиРешение гиперболических и однородных интегральных уравнений методом последовательных приближений, нахождение членов функциональной последовательности. Доказательство Леммы. Нелокальные задачи для уравнений смешанного типа с сингулярными коэффициентами. 
 статья, добавлен 15.06.2015
- Начально-краевая задача для одного квазилинейного параболического уравнения с запоминающим оператором в ограниченной области с достаточно гладкой границей. Доказательство теоремы о существовании решений рассматриваемой задачи с запоминающим оператором. 
 статья, добавлен 11.11.2018
- Описание метода конечных разностей на примере определения зависимости температуры от времени в различных точках стержня из теплопроводящего материала. Решение смешанной задачи для уравнения теплопроводности с заданными начальным и граничными условиями. 
 лабораторная работа, добавлен 27.04.2011
- Определение порядка уравнения наибольшим порядком производной. Формулировка теоремы о структуре общего решения линейного уравнения 1-го порядка. Определитель Вронского как главный определитель системы уравнений. Преобразование решения по функции Эйлера. 
 лекция, добавлен 14.03.2014
- Система нелинейных дифференциальных уравнений в частных производных первого порядка. Доказательство существования решения системы интегральных уравнений. Запись операторов в функциональных пространствах с использованием принципа "сжимающих отображений". 
 автореферат, добавлен 12.05.2018
- Теорема существования и единственности решения. Принципы графического представления задачи Коши в математике. Характеристики частного решения дифференциального уравнения. Особые точки и способы их использования дифференциальных уравнений первого порядка. 
 контрольная работа, добавлен 04.12.2014
- 86. Исследование решений операторно-дифференциальных уравнений в частных производных высшего порядкаРассмотрение общей схемы исследования нелинейных дифференциальных и интегро–дифференциальных уравнений в частных производных высокого порядка. Характеристика основ применяемого метода дополнительного аргумента. Сведение к решению интегрального уравнения. 
 реферат, добавлен 18.05.2016
- Методика численного решения краевой задачи для уравнения теплопроводности с использованием неявной конечно-разностной схемы. Применение алгоритма встречной прогонки для вычисления системы линейных уравнений с трехдиагональной матрицей коэффициентов. 
 статья, добавлен 12.08.2020
- Определение дифференциального уравнения (ДУ) и понятие его порядка. Интегрирование ДУ как операция нахождения его решения. Теорема существования и единственности решения дифференциального уравнения (теорема Коши). Геометрический смысл ДУ и его решений. 
 лекция, добавлен 06.04.2018
- Изучается краевая задача с нелокальным граничным условием для уравнения смешанного типа с неизвестной правой частью в прямоугольной области. Установлен критерий единственности решения поставленной обратной задачи в виде сумм биортогональных рядов. 
 статья, добавлен 31.05.2013
- Поиск оптимального разрешения смешанной задачи в анизотропном полупространстве с ярко выраженной вертикальной проницаемостью сведением рассматриваемой задачи фильтрации к исследованию абстрактной начально-краевой задачи в банаховом пространстве. 
 статья, добавлен 31.05.2013
- Построение оценки функции регрессии с помощью метода наименьших квадратов. Нахождение значения коэффициента методами трапеций и парабол, решение уравнения. Изучение распределения температуры в тонком цилиндрическом стержне. Решение краевой задачи. 
 дипломная работа, добавлен 24.12.2011
- Рассмотрение уравнений второго порядка, разрешенных относительно второй производной. Формулировка и доказательство теоремы Коши (о существовании и единственности решения дифференциального уравнения). Геометрический смысл теоремы, ее общее решение. 
 презентация, добавлен 17.09.2013
- Критерии непрерывности зависимости решений обыкновенного дифференциального уравнения, уравнения в частных производных. Нахождение приближенного решения краевых задач с оценкой погрешности. Математическая модель для решения задач механики сплошных сред. 
 автореферат, добавлен 02.03.2018
- 94. Начально-краевая задача для одномерного гиперболического уравнения с интегральным граничным условиемИсследование начально-краевой задачи для гиперболического уравнения с нелокальным граничным условием, содержащим интеграл от искомого решения. Нелокальные соотношения, связывающие значение искомого решения в граничных и внутренних точках области. 
 статья, добавлен 31.05.2013
- Дифференциальные уравнения второго порядка с постоянными коэффициентами. Вычисление значения неопределенных коэффициентов. Решение системы из трех уравнений. Три случая решения характеристического уравнения и общее решение однородного уравнения. 
 учебное пособие, добавлен 05.05.2015
- Изучение понятия дифференциального уравнения. Комбинаций производных функций и независимые переменные. Определения вида постоянных и неопределенных функций. Дифференциальное исчисление, созданное Лейбницем и Ньютоном (1642—1727). Формула бином Ньютона. 
 презентация, добавлен 26.10.2013
- Отличительные черты скалярных и векторных физических величин. Градиент скалярного поля, дивергенция векторного поля и теорема Остроградского-Гаусса. Описание ротора векторного поля и теоремы Стокса. Задачи на использование метода оператора набла. 
 реферат, добавлен 21.06.2016
- 98. Использование дифференциальных уравнений в частных производных для моделирования реальных процессовЗадачи, приводящие к уравнениям гиперболического типа (колебания струны). Методы решения дифференциальных уравнений гиперболического типа. Дифференциальные уравнения параболического типа. Вывод уравнения дифракции излучения на сферической частице. 
 дипломная работа, добавлен 27.02.2020
- 99. Метод прогонкиАнализ методов конечных элементов и разностных схем, решающих системы линейных алгебраических уравнений. Характеристика построения матрицы с доминирующей главной диагональю. Обоснование формул в системе краевой задачи для трехточечного уравнения. 
 презентация, добавлен 30.10.2013
- Линейная и векторная алгебра, уравнения прямой на плоскости. Кривые второго порядка, дифференциальная геометрия и предел функции в точке. Виды интегралов и дифференциальные уравнения в частных производных. Дискретная математика и теория вероятностей. 
 учебное пособие, добавлен 11.02.2015
