Примеры применение диофантовых уравнений

Математические уравнения как основное средство познания при моделировании физических явлений и строения окружающего мира, их классификация и типы. Понятие диофантового анализа уравнений и принципы его реализации, варианты решения при использовании.

Подобные документы

  • Определение, виды, порядок, а также способы решения дифференциального уравнения. Методика решения уравнений с разделяющимися переменными. Сущность методов Бернулли и Лагранжа. Формулы для нахождения общего решения однородного и неоднородного уравнений.

    шпаргалка, добавлен 10.09.2009

  • Решение неопределенных уравнений только в целых числах. Применение в современной математике направления, занимающегося исследованиями диофантовых уравнений, поиском способов их решений. Изобретение Ферма, его интерес к поиску целочисленных решений.

    статья, добавлен 12.04.2019

  • Общие понятия, определения и примеры дифференциальных уравнений. Дифференциальные уравнения I порядка, задача Коши. Уравнения с разделяющимися переменными, линейные уравнения. Теорема существования и единственности решения дифференциального уравнения.

    курсовая работа, добавлен 16.04.2015

  • Доклад немецкого математика Давида Гильберта на Международном конгрессе 1900 года в Париже "Математические проблемы". Суть 10-ой проблемы Гильберта, которая называется "Задача о разрешении диофантовых уравнений", на примерах алгебраических уравнений.

    реферат, добавлен 05.12.2012

  • Описание способов решения уравнений второй, третьей и четвертой степени. Использование формулы Кардана, выражающего корни уравнения через его коэффициенты при помощи квадратных радикалов. Примеры решения уравнений второй, третьей и четвертой степени.

    курсовая работа, добавлен 08.02.2021

  • Квадратные уравнения в Древнем Вавилоне, Индии и Европе, история их возникновения и развития. Структура и содержание теоремы Виета, принципы и направления ее практического применения. Способы решения квадратных уравнений, их содержание и принципы.

    контрольная работа, добавлен 07.04.2016

  • Понятие и математическое описание рациональных уравнений и неравенств. Иррациональные уравнения и дробные неравенства. Особенности методов изучения тригонометрических и логарифмических уравнений. Трансцендентные неравенства и основные методы их решения.

    презентация, добавлен 08.09.2013

  • Понятие модуля (абсолютной величины) действительного числа. Основные свойства модуля и его геометрический смысл. Графическое решение квадратных уравнений. Схемы решений основных типов уравнений. Особенности решения уравнения со "сложным" модулем.

    контрольная работа, добавлен 05.10.2012

  • Определение, расчет и совместность системы линейных уравнений. Варианты решений фундаментальной системы уравнений и вычисление рангов матрицы. Модифицированная матрица и вычетание уравнений из строк. Определение произвольный системы, отличный от нуля.

    контрольная работа, добавлен 21.11.2012

  • Проблема численного решения линейных уравнений. Основные методы решения нелинейных уравнений. Графическая иллюстрация метода половинного деления. Создание функциональной модели нахождения корней уравнения методами Ньютона, хорд и половинного деления.

    дипломная работа, добавлен 31.10.2014

  • Уравнения, содержащие неизвестные в показателе степени. Использование метода приведения к одному основанию при решении показательных уравнений. Особенности решения уравнений методом оценки, графическим методом и методом введения новых переменных.

    презентация, добавлен 27.05.2014

  • Разновидность комбинаторных задач, их характеристика и специфика. Этапы приближенного решения нелинейных уравнений, графическое и аналитическое отделение корней. Описание и отличительные черты методов решения нелинейных уравнений, их применение.

    курсовая работа, добавлен 14.03.2015

  • Определение понятий линейных и квадратных уравнений. Принцип решения данных уравнений: описание общих и частных случаев. Примеры и объяснение этапов решения, составление ответа. Решение линейных и квадратных уравнений с дополнительными условиями.

    реферат, добавлен 09.02.2009

  • Метод Рунге-Кутты для решения как одиночных дифференциальных уравнений первого порядка, так и систем уравнений первого порядка. Исследование метода Рунге-Кутты четвертого порядка для решения дифференциальных уравнений. Программа для решения уравнения.

    контрольная работа, добавлен 29.03.2012

  • История развития знаний и известные способы решения квадратных уравнений. Зависимость корней от знака дискриминанта. Решение квадратных уравнений с помощью циркуля, линейки. Свойства коэффициентов квадратного уравнения, теорема Виета и задача Диофанта.

    презентация, добавлен 13.01.2017

  • Основные правила решения иррациональных уравнений стандартного и смешанного вида. Примеры решения сложных иррациональных уравнений и нестандартных иррациональных неравенств. Особенности решения иррациональных неравенств стандартного и смешанного вида.

    контрольная работа, добавлен 22.12.2011

  • Обзор существующих методов решения нелинейных уравнений. Алгебраические и трансцендентные уравнения. Методы локализации корней. Алгоритм метода Ньютона. Численные методы решения нелинейных уравнений. Разработка и тестирование программного продукта.

    курсовая работа, добавлен 14.05.2014

  • Применение дифференциальных уравнений в различных областях науки. Исторические личности и этапы развития дифференциальных уравнений. Практическое применение их в медицине, при создании аппарата "искусственная почка". Дифференциальные уравнения в биологии.

    презентация, добавлен 07.05.2020

  • Изучение истории развития науки математики. Характеристика применения Ахмесом метода одного и двух ложных положений (фальшивое правило). Анализ способов составления и решения квадратных уравнений в древнем Вавилоне. Решение уравнений в целых числах.

    реферат, добавлен 02.11.2010

  • Сущность совместной системы уравнений. Признаки несовместной системы уравнений. Понятие эквивалентной системы уравнений. Элементарные преобразования системы. Гаусс Карл Фридрих как выдающийся немецкий математик. Решение уравнений методом Гаусса.

    презентация, добавлен 14.01.2018

  • Классификация дифференциальных уравнений в частных производных. Решение линейных дифференциальных уравнений второго порядка. Построение различных схем метода сеток в случае уравнений в частных производных зависит от типа уравнений, вида граничных условий.

    доклад, добавлен 29.04.2021

  • Сущность обыкновенных дифференциальных уравнений, описание их общего вида и основные правила решения. Понятие условия Коши, его применение. Роль дифференциальных уравнений в решении прикладных задач. Порядок нахождения уравнения кривой, основные методы.

    курсовая работа, добавлен 25.11.2013

  • Уравнения первого порядка с разделяющимися переменными. Решение линейных уравнений первого порядка при помощи подстановки Бернулли. Линейные однородные дифференциальные уравнения. Алгоритм решения дифференциальных уравнений второго и третьего порядков.

    методичка, добавлен 27.04.2016

  • Решение уравнений в целых и рациональных числах как один из самых красивых разделов математики, теоретические и практические сведения которого используются в инженерии, биологии и повседневной жизни. Анализ способов решения линейных диофантовых уравнений.

    статья, добавлен 06.04.2019

  • Понятие системы линейных уравнений, ее структура и предъявляемые требования, методы решения. Типы систем: совместная и несовместная, определенная и неопределенная, их отличия. Особенности представления системы линейных уравнений в матричной форме.

    презентация, добавлен 21.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.