Математическая теория игр

Представление и характеристика игр, экстенсивная и нормальная формы. Применение теории игр, нормативный анализ (выявление наилучшего результата). Типы игр: кооперативные, симметричные, параллельные, последовательные, дискретные, непрерывные и др.

Подобные документы

  • Игра как математическая модель конфликтной ситуации. Основные понятия теории игр, ее ключевые понятия. Парные матричные игры с нулевой суммой. Характеристика методов решения матричных игр. Выбор пары альтернатив. Статистические игры (игры с "природой").

    презентация, добавлен 20.09.2017

  • Закономерности случайных явлений. Методы количественной оценки влияния случайных факторов на различные явления. Операции над событиями и их свойства. Дискретные и непрерывные случайные величины. Ряд распределения вероятности дискретной случайной величины.

    курс лекций, добавлен 16.05.2016

  • Теория вероятностей как математическая наука, позволяющая по вероятностям одних случайных событий находить возможность появления других, связанных каким-либо образом с первыми. Периодизация истории науки и ее применения в естествознании и технике.

    контрольная работа, добавлен 20.11.2013

  • Случайная величина, которая в зависимости от исхода испытания случайно принимает одно из множества возможных значений. Непрерывные и дискретные случайные величины. Основные свойства функции распределения, математического ожидания, коэффициента корреляции.

    реферат, добавлен 25.02.2011

  • Дискретные и непрерывные виды случайных величин, законы распределения вероятностей их значений. Биноминальное распределение, формулы Бернулли и Пуассона. Понятие математического ожидания. Необходимые и достаточные условия независимости случайных величин.

    контрольная работа, добавлен 02.02.2010

  • Постановка задачи и построение модели алгоритма, описание и доказательство его правильности. Описание переменных программы и расчет вычислительной сложности. Использование одномерного массива размерности, совпадение начального и конечного результата.

    реферат, добавлен 30.10.2010

  • Изучение единственной абсолютно монотонной функции наилучшего равномерного приближения на отрезке. Использование специального критерия единственности наилучшего приближения клином. Применение теоремы для других конусов, состоящих из непрерывных функций.

    статья, добавлен 07.08.2020

  • История возникновения теории графов. Основные ее определения и теоремы. Применение положений данной теории в школьном курсе математики, в различных областях науки и техники. Объяснение теоретического материала на примере задач по естествознанию.

    реферат, добавлен 01.03.2018

  • Анализ основных понятий теории вероятностей. Прикладное применение знания теории вероятностей, обзор ее основные видов. Понятие случайного события, логика мышления по закону вероятности. Определение вероятности какого-либо события из повседневной жизни.

    доклад, добавлен 13.03.2022

  • Теория вероятностей и основные теоремы. Дискретная и непрерывная случайная величина. Статистическое распределение выборки, точечные и интервальные оценки. Доверительный интервал и критерий Пирсона. Элементы теории корреляции и формулы полной вероятности.

    контрольная работа, добавлен 08.12.2011

  • Вероятность случайного события и элементы комбинаторики. Основные теоремы теории вероятностей. Многомерная случайная величина и закон ее распределения. Точечные оценки параметров генеральной совокупности. Гипотеза о равенстве математических ожиданий.

    презентация, добавлен 05.10.2014

  • Математическая теория очевидностей, основанная на функции доверия и функции правдоподобия, использующихся с целью комбинирования отдельных частей информации для вычисления возможности события. Отличие теории Демпстера-Шеффера от теории вероятностей.

    реферат, добавлен 17.12.2010

  • Программа курса высшей школы для ознакомления с задачами и методами теории вероятностей и математической статистики в объёме, достаточном для успешного практического использования в работе. Включает экзаменационные вопросы и образцы контрольных работ.

    методичка, добавлен 16.01.2014

  • Математическая теория конфликтных ситуаций или теория игр. Назначение - решение задач в условиях неопределенности. Оптимальная стратегия для каждого игрока. Игровые модели, платёжная матрица, нижняя и верхняя цена игры. Задачи линейного программирования.

    курсовая работа, добавлен 08.10.2009

  • Определение гамма-функции. Интегральное представление, область определения, полюсы. Свойства, непрерывность. Представление Ганкеля через интеграл по петле. Предельная форма Эйлера. Применение гамма-функции в теории вероятностей и математической статистике

    курсовая работа, добавлен 08.06.2017

  • Постановка, стандартные формы записи задачи линейного программирования, способы их решения. Основные понятия и определения теории графов, сетевая модель как графическая модель комплекса работ. Математическая формализация и алгоритмизация игровых задач.

    курсовая работа, добавлен 11.06.2013

  • Определение количества некачественных и дефектных товаров в партии согласно теории вероятности, расчет математического ожидания и среднего квадратичного отклонения. Анализ дисперсии распределения выборки, понятие статистической игры и критериев Байеса.

    контрольная работа, добавлен 19.02.2015

  • Определение понятия и характеристика основных понятий теории вероятностей. Основы комбинаторики, относительная частота события. Геометрическое определение вероятности и ее аксиоматическое построение. Закон распределения дискретной случайной величины.

    учебное пособие, добавлен 24.11.2014

  • Понятие случайной величины в статистическом анализе, дискретные и непрерывные случайные величины. Свойства дифференциальной функции распределения вероятностей. Статистические функции непрерывных распределений. Изучение в Microsoft Excel данных функций.

    курсовая работа, добавлен 06.10.2011

  • Основные задачи математической статистики и ее применение в психолого-педагогических науках. Шкалирование, виды шкал. Программные продукты для обработки информации. Выявление различий в уровне исследуемого признака. Факторный и кластерный анализ.

    курс лекций, добавлен 02.10.2014

  • Теория вероятностей как математическая наука, позволяющая находить вероятности случайных событий, связанных каким-либо образом. Ее предмет и основные понятия, история возникновения. Теоремы: сложения вероятностей, предельная; теория случайных процессов.

    реферат, добавлен 26.02.2010

  • Предмет теории вероятностей, основное содержание и законы данной науки, направления ее исследования. Типы анализов, оценка их конечных результатов. Моделирование случайных величин методом Монте-Карло (статистических испытаний), его принципы и значение.

    курс лекций, добавлен 02.02.2012

  • Дискретные и непрерывные случайные величины. Функция распределения вероятностей случайной величины и ее свойства. Плотность распределения вероятностей. Числовые характеристики непрерывных случайных величин. Законы распределения, теорема Ляпунова.

    курсовая работа, добавлен 01.11.2014

  • Определения и теоремы теории графов, подграфы. Операции над графами и степени их вершин. Цепи, циклы и компоненты. Применение теории графов в школьном курсе математики, в задачах управления дорожным движением, химии, биологии, физике. Графы и информация.

    курсовая работа, добавлен 22.06.2014

  • Рассмотрение расшифровки урновой схемы. Особенности определения геометрической вероятности. Исследование принципов применения формулы Бернулли в теории вероятности. Характеристика предельных значений вероятностей событий, интегральной теоремы Лапласа.

    контрольная работа, добавлен 26.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.