Введение в математический анализ
Определение числовой последовательности. Связь натурального и десятичного логарифмов. Предел функции при стремлении аргумента к бесконечности. Свойства и сравнение бесконечно малых функций. Тригонометрическая форма числа. Действия с комплексными числами.
Подобные документы
Понятие комплексного числа, его геометрическая интерпретация. Математические операции над комплексными числами: вычитание и деление, возведение в степень, извлечение корня, тригонометрическая форма, свойства модуля и аргумента. Уравнения высших степеней.
курсовая работа, добавлен 26.09.2009Предел последовательности. Необходимое условие сходимости бесконечной числовой последовательности. Вычисление предела последовательности. Бесконечно малые последовательности. Связь между бесконечно малыми и сходящимися последовательностями, их свойство.
контрольная работа, добавлен 03.03.2012Определение предела функции для бесконечно большой последовательности значений аргумента. Проколотая окрестность точки и ограничение функции. Произведение арифметических операций, имеющих предел. Вычисления замечательных пределов и дуги окружности.
лекция, добавлен 26.01.2014Рассмотрение определения функции в математическом анализе. Расчет предела функциональной последовательности. Бесконечно малые функции и их основные свойства. Изучение равенства односторонних пределов. Ограничение функций сверху и снизу на множестве.
презентация, добавлен 16.10.2014Определение понятия предела функции для любой бесконечно большой последовательности. Характеристика ограниченности функций и арифметических операций, при условии наличия пределов. Изучение свойств бесконечно малых и больших математических функций.
лекция, добавлен 29.09.2013Множество действительных чисел. Действия над комплексными числами в алгебраической форме. Четность, нечетность, монотонность, периодичность функции. Теоремы о пределах, формулы, свойства логарифмов. Радианная и градусная меры углов. Периодические функции.
шпаргалка, добавлен 04.05.2011Геометрическая интерпретация комплексного числа. Арифметические операции над комплексными числами. Геометрическое изображение суммы, вычитание и деление, геометрическое изображение разности, тригонометрическая форма, свойства модуля и аргумента.
курсовая работа, добавлен 29.11.2014Понятие предела функции. Определение предела числовой последовательности. Бесконечно малая и бесконечно большая величины. Предел последовательности и функции. Теорема предела частного. Определение предела функции по Гейне ("на языке последовательностей").
реферат, добавлен 28.11.2019Общее понятие последовательности. Основные свойства предела. Бесконечно малая последовательность и критерий Коши. Признак Вейерштрасса и подпоследовательности. Определение предела по Коши и Гейне. Бесконечно малые и бесконечно большие величины.
реферат, добавлен 23.12.2011Предел функции в точке, ее непрерывность. Бесконечно большие и малые функции. Классификация точек разрыва. Первый и второй замечательные пределы. Сравнение бесконечно малых функций. Асимптоматические формулы, правило Лопиталя. Разложение в ряд Тейлора.
учебное пособие, добавлен 12.02.2013Множества и операции над ними. Сходящиеся и монотонные числовые последовательности. Предел и непрерывность функции. Бесконечно малые и бесконечно большие функции. Раскрытие неопределенностей, замечательные пределы. Основные свойства непрерывных функций.
лекция, добавлен 29.09.2014Рассмотрение характера изменения функции при возрастании значения аргумента. Символическая запись предела последовательности. Изучение основных теорем о бесконечно малых функциях. Примеры разделения числителя и знаменателя на наибольшее выражение.
контрольная работа, добавлен 11.01.2014Определение предела последовательности и предела функций в математике. Бесконечно малые и большие функции и их свойства. Предел постоянной величины равен самой постоянной. Вычисление постоянного множителя. Непрерывность функций нескольких переменных.
презентация, добавлен 02.04.2015История возникновения комплексных чисел, их общая характеристика. Действия над комплексными числами в алгебраической форме. Геометрическая интерпретация комплексного числа, его тригонометрическая, показательная форма. Применение комплексных чисел.
контрольная работа, добавлен 30.01.2010Сущность числовой последовательности, анализ свойств и функций. Геометрическая интерпретация предела последовательности. Теорема сравнения. Основные характеристики функции. Базовые теоремы о пределах. Раскрытие неопределенностей. Замечательные пределы.
курс лекций, добавлен 23.11.2011Нахождение пределов функций, левого и правого пределов в точке, скачка функции в каждой точке разрыва, точки разрыва функции, если они существуют, значения функции при стремлении аргумента к каждому из данных значений. Построение схематического чертежа.
контрольная работа, добавлен 26.11.2016Числовая последовательность, понятие ее предела. Разновидности предела функции, его свойства. Бесконечно большие величины, определение и примеры решения задач. Ограниченная функция. Связь между ограниченной функцией и функцией, имеющей предел.
лекция, добавлен 05.03.2009Формульное выражение и свойства бесконечно малых функций, распространяемых на случаи алгебраической суммы конечного числа. Методы вычисления бесконечно больших величин. Изучение теоремы о пределах. Способы подстановки предельного значения аргумента.
лекция, добавлен 07.07.2015Определение функции, ее свойства. Основные элементарные функции. Предел функции в точке, способы его вычисления. Вычисление предела отношения бесконечно малых функций. Раскрытие неопределенностей. Доказательство первого и второго замечательных пределов.
лекция, добавлен 29.09.2014Сравнение бесконечно малых функций, их определение. Некоторые эквивалентные бесконечно малые функции при x>0. Раскрытие неопределенностей. Свойства функций, непрерывных на отрезке. Основные соотношения, их доказательство и примеры решений задач.
презентация, добавлен 16.10.2014- 21. Свойства функций
Основные понятия функций. Числовая и сходящиеся последовательности. Бесконечный, односторонний, замечательный пределы и пределы на бесконечности. Принцип сходимости, предел функции и теорема Гейне. Непрерывность функции, композиции и точки разрыва.
реферат, добавлен 17.01.2011 Графики элементарных функций, их непрерывность. Классификация точек разрыва. Кратко о Maple. Сущность первого и второго замечательных пределов. Сравнение бесконечно малых функций. Асимптотические формулы. Правило Лопиталя. Разложение в ряд Тейлора.
учебное пособие, добавлен 11.10.2012- 23. Линейная алгебра
Системы линейных уравнений и матрицы. Действия с комплексными числами. Смежные классы и теорема Лангранжа. Тригонометрическая форма комплексного числа. Понятия дискриминант и результант. Многочлены и ряды от переменной. Описание кольца степенных рядов.
курс лекций, добавлен 28.12.2013 Способ обоснования существования актуальных бесконечно малых чисел, основанный на понятии двузначной меры. Аксиоматический подход к понятию расширенной числовой прямой. Арифметика бесконечно малых чисел. Основные теоремы дифференциального исчисления.
монография, добавлен 03.07.2014История возникновения комплексных чисел, их утверждение в математике. Геометрическое изображение комплексных чисел, их тригонометрическая форма. Действия с числами: сложение, вычитание, умножение и деление. Решение уравнений с комплексными переменными.
реферат, добавлен 29.08.2014