Основные структуры математического анализа

Понятие линейного, нормированного и предгильбертового пространства. Последовательности точек метрического пространства, предел и непрерывность его отображений. Необходимое условие компактности множеств. Принцип Баноха сжимающих отображений, их свойства.

Подобные документы

  • Система нелинейных дифференциальных уравнений в частных производных первого порядка. Доказательство существования решения системы интегральных уравнений. Запись операторов в функциональных пространствах с использованием принципа "сжимающих отображений".

    автореферат, добавлен 12.05.2018

  • Возникновение и развитие математики как научной дисциплины. Основные понятия дифференциации функций: предел, производная, непрерывность. Исчисление определенного и неопределенного интегралов. Нахождение промежутков выпуклости и точек перегиба функции.

    учебное пособие, добавлен 28.12.2013

  • Понятие и структура множеств как совокупности объектов, объединенных некоторым признаком, свойством. Их основные элементы и направления математического исследования, способы задания. Изображение множеств и существующие операции, проводимые над ними.

    методичка, добавлен 15.11.2013

  • О криптологии и криптоанализе: некоторые классические шифры и методы их вскрытия. Шифр Атбаш и Цезаря. Рекуррентные последовательности для генерации длинных циклов псевдослучайных чисел. Особенности языка программирования Python и описание методов.

    дипломная работа, добавлен 01.12.2019

  • Поиск способа представления системы как совокупности взаимосвязанных множеств. Обоснование принципов геометрической интерпретации понятий "элемент системы" и "система". Аналогия между геометрией и теорией информации. Информационные свойства пространства.

    статья, добавлен 26.04.2017

  • Непрерывность функции в точке и на множестве. Точки разрыва функции и их классификация. Действия над непрерывными функциями. Непрерывность основных элементарных функций. Свойства функций, непрерывных на отрезке, равномерная непрерывность функции.

    лекция, добавлен 10.02.2016

  • Понятие линейного математического программирования. Модели линейного программирования с двумя переменными. Системы линейных уравнений. Принцип максимина в антагонистических играх, седловая точка. Чистые и смешанные стратегии. Теоремы матричных игр.

    курс лекций, добавлен 24.06.2014

  • Сущность частного приращения по переменной в определенной точке, особенности наличия предела и его определение. Понятие дифференцируемости функции двух переменных, необходимое условие и достаточные. Характеристика основных теорем частных производных.

    лекция, добавлен 29.09.2013

  • Основные определения и понятия нечетких множеств, используемые для преобразования информации. Свойства нечетких отношений и операторы преобразований. Обсуждение вопросов измерения нечеткости, которая выражается в терминах метрического расстояния.

    статья, добавлен 28.10.2018

  • Анализ пространства как трехмерного континуума. Возможность четырехмерной трактовки "мира". Оценка пространства Минковского как четырёхмерного псевдоевклидового пространства сигнатуры, предложенного в геометрической интерпретации пространства-времени.

    реферат, добавлен 15.05.2016

  • Множества в векторных пространствах. Продолжение положительных функционалов и операторов. Равномерность и топология метрического пространства. Теорема Жордана и простые картины. Выпуклые функции и сублинейные функционалы, алгебра ограниченных операторов.

    монография, добавлен 18.06.2015

  • Геометрический смысл производной функции комплексного переменного. Геометрический смысл аргумента и модуля производной. Общие свойства конформных отображений. Линейная, дробно-линейная, степенная функция. Понятие римановой поверхности. Функция Жуковского.

    курсовая работа, добавлен 08.11.2017

  • Понятие предела функции. Определение предела числовой последовательности. Бесконечно малая и бесконечно большая величины. Предел последовательности и функции. Теорема предела частного. Определение предела функции по Гейне ("на языке последовательностей").

    реферат, добавлен 28.11.2019

  • Некоторые простейшие свойства линейных пространств, базис и координаты элементов линейного пространства. Критерий совместности общей линейной системы уравнений. Основные метрические понятия в евклидовом пространстве. Неравенство Коши-Буняковского.

    учебное пособие, добавлен 13.02.2016

  • Понятие о функции двух переменных. Понятие и содержание линии уровня функции, порядок ее нахождения. Предел и его свойства. Непрерывность и дифференцируемость функции двух переменных. Частные производные. Методика определения дифференциала и градиента.

    контрольная работа, добавлен 20.09.2011

  • Предназначение и применение функции нескольких переменных. Сущность и характеристика дифференцируемой функции, значение дифференциала. Определение предела функции нескольких переменных, её непрерывность. Описание и использование точки поверхности.

    курсовая работа, добавлен 16.04.2015

  • Линейные ограниченные операторы в банаховых пространствах. Векторные пространства над полем. Изоморфизмом векторных пространств и оператор умножения на функцию. Основные свойства линейности интеграла. Решение сопряженного однородного уравнения.

    реферат, добавлен 20.02.2018

  • Понятие математической функции. Основные элементарные функции. Поиск области определения функций. Предел числовой последовательности, а также функции в бесконечности и точке. Вычисление пределов. Применение бесконечно малых величин к вычислению пределов.

    методичка, добавлен 21.03.2013

  • Свойства непрерывных функций на языке приращений. Классификация точек разрыва. Экономический смысл непрерывности. Геометрический смысл теорем Вейерштрасса, Коши, Вейерштрасса. Применение в математике метода половинного деления. Вычисление корня уравнения.

    реферат, добавлен 19.12.2014

  • Теория пределов как один из разделов математического анализа. Основные типы пределов, которые встречаются на практике. Графики и свойства элементарных функций. Пределы с неопределенностью вида и метод их решения. Поиски предела, анализ вариантов решения.

    контрольная работа, добавлен 01.12.2013

  • Особенности толкования понятий множества и функции в математическом анализе. Определение предела числовой последовательности. Сущность и свойства сходящихся последовательностей. Определение непрерывности функции в точке. Функции, непрерывные на сегменте.

    учебное пособие, добавлен 13.09.2015

  • Рассмотрение обозначений, принятых в теории множеств. Характеристические функции множеств, свойства операций над множествами. Применение понятия мощности множества для количественной характеристики множеств. Верхняя и нижняя грани числового множества.

    курсовая работа, добавлен 07.05.2015

  • Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.

    курс лекций, добавлен 24.04.2009

  • Изучение свойств предела монотонной, ограниченной числовой последовательности. Доказательство того, что если в окрестности точки функция f(x) заключена между двумя (х) и (х), имеющими одинаковый предел, равный А, то функция f(x) имеет тот же предел А.

    презентация, добавлен 21.09.2013

  • История возникновения понятия вероятности и ее классическое определение. Построение вероятностного пространства и теорема о продолжении меры. Определение и свойства вероятностного пространства и вероятностной меры. Аксиомы существования вероятности.

    курсовая работа, добавлен 08.10.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.