Линейная алгебра

Матрицы и определители. Линейные операции над матрицами и их умножение. Свойства определителей. Системы линейных алгебраических уравнений. Метод Крамера и Гаусса Ранг. Теорема Кронекера-Капелли. Системы линейных однородных уравнений. Модель Леонтьева.

Подобные документы

  • Использование итерации в прикладной математике. Выполнение арифметических операций над переменными с плавающей точкой на компьютере. Преобразования матрицы чисел прямым и обратным ходом Гаусса. Решения линейных систем уравнений методом квадратного корня.

    лабораторная работа, добавлен 21.03.2014

  • Описание методов Зейделя, удобного для итерации, и Гаусса с выбором главного элемента по столбцу (схема частичного выбора) и по всей матрице (схема полного выбора) и их использование. Программы решений системы линейных уравнений данными методами.

    контрольная работа, добавлен 09.11.2010

  • Системы линейных уравнений и матрицы. Действия с комплексными числами. Смежные классы и теорема Лангранжа. Тригонометрическая форма комплексного числа. Понятия дискриминант и результант. Многочлены и ряды от переменной. Описание кольца степенных рядов.

    курс лекций, добавлен 28.12.2013

  • Технология решений систем линейных алгебраических уравнений в интегрированной среде MathCad. Определение решения системы методом простой итерацией и матричным методом. Значение коэффициентов при неизвестных. Математическая палитра интегрированной среды.

    лабораторная работа, добавлен 16.05.2015

  • Простые и итерационные методы вычисления систем уравнений. Нормы вектора и матрицы. Условия их согласованности. Коэффициентная устойчивость решения по правой части. Алгоритм и определение трудоемкости метода Гаусса. Операции умножения и деления.

    презентация, добавлен 30.10.2013

  • Система, имеющая более чем одно решение (неопределенная). Метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида. Применение метода Крамера.

    презентация, добавлен 23.08.2016

  • Сущность линейных дифференциальных уравнений высших порядков. Характеристика однородных уравнения, основные свойства их решений. Определитель Вронского, его свойства. Линейная зависимость системы функций. Методы нахождения частного решения уравнения.

    курс лекций, добавлен 23.10.2013

  • Изучение метода последовательного исключения переменных. Элементарные преобразования строк расширенной матрицы. Доказательство теоремы Крамера. Нахождение обратной матрицы методом Гаусса. Определение числовых значений главных неизвестных через свободные.

    лекция, добавлен 29.09.2013

  • Виды матриц и операции над ними. Системы линейных алгебраических уравнений. Линейные операции над векторами. Аналитическая геометрия, уравнения плоскости. Кривые второго порядка: эллипс гипербола, парабола. Свойства предела функции, таблица производных.

    курс лекций, добавлен 05.01.2016

  • Сущность линейных операций над векторами. Определение базиса и скалярного произведения. Декартова система координат. Уравнение плоскости и прямой в пространстве. Ранг матриц и операции с ними. Система и свойства решений линейных алгебраических уравнений.

    курс лекций, добавлен 20.09.2011

  • Моделирование физических объектов, дискретная модель которых описывается системой линейных алгебраических уравнений (СЛАУ). Методика проверки на корректность СЛАУ, составленной методом узловых потенциалов, имеющей невырожденную и симметричную матрицу.

    статья, добавлен 25.12.2016

  • Вычисление определителя матрицы с помощью ее элементарных преобразований. Решение систем линейных уравнений методом Крамера. Алгебраические дополнения транспонированной матрицы. Решение выражений с помощью свойств скалярного, векторного произведений.

    контрольная работа, добавлен 19.01.2014

  • Понятие определителей, действия над матрицами. Система линейных алгебраических уравнений. Векторы и нелинейные операции. Аналитическая геометрия: простейшие задачи на плоскости. Приложения производной: правило Лопиталя, монотонность функции, экстремумы.

    методичка, добавлен 15.11.2014

  • Сумма элементов матрицы по строкам. Алгоритм нахождения обратной квадратной матрицы и ее определителя. Решение системы линейных уравнений методом Крамера и Гаусса. Построение математической модели экономического процесса и определение плана производства.

    контрольная работа, добавлен 21.05.2013

  • Классические итерационные метода. Релаксация как методика уточнения решения. Прямые методы решения системы линейных алгебраических уравнений. Особенности итерационного метода Якоби, примеры его применения. Метод простых итераций, условия сходимости.

    курсовая работа, добавлен 25.01.2017

  • Численное решение нелинейных уравнений. Методы деления отрезка пополам, Ньютона (метод касательных) и простой итерации. Решение систем линейных алгебраических уравнений. Методы Гаусса, обратной матрицы, прогонки, простой итерации (метод Якоби), Зейделя.

    методичка, добавлен 26.09.2016

  • Итерационные методы решения линейных алгебраических уравнений. Подчиненные и согласованные матричные нормы. Метод последовательной верхней релаксации. Ассимитотическая скорость сходимости. Обусловленность матриц и систем линейных алгебраических уравнений.

    курсовая работа, добавлен 15.08.2017

  • Назначение матриц в системах линейных уравнений, операции над матрицами, правила их сложения матриц и умножения на скаляр, транспонирование произведения двух матриц. Понятие и свойства определителя квадратной матрицы, доказательство теоремы Коши-Бине.

    курсовая работа, добавлен 11.01.2015

  • Вычисление определителя четвертого порядка, способов разложения его по элементам. Характеристика основных свойств определителей. Исследование системы линейных алгебраических уравнений (основных понятий и определений). Методы применения формулы Крамера.

    презентация, добавлен 29.08.2015

  • Матрицы и определители, их основные свойства и операции над ними. Собственные векторы и значения матрицы. Примеры использования аппарата для классических экономических моделей. Свойства скалярного произведения. Плоскость и прямая в пространстве.

    методичка, добавлен 14.12.2010

  • Теоретические основы эвклидовости в математике. Кольца целостности. Евклидовы кольца. Матрицы над евклидовым кольцом. Линейные уравнения и системы линейных уравнений над кольцом целостности. Системы линейных уравнений над произвольным евклидовым кольцом.

    курсовая работа, добавлен 22.03.2016

  • Понятие экономико-математической модели задачи (составление системы алгебраических уравнений). Определение объема выпуска продукции каждого вида при заданных запасах сырья и особенности решения: методом Крамера, матричным методом и методом Гаусса.

    задача, добавлен 06.01.2015

  • Примеры решения математических заданий на нахождение матрицы, производной методом дифференциального исчисления, вычисление определителя четвертого порядка, системы линейных алгебраических уравнений методом Крамера и средствами матричного исчисления.

    контрольная работа, добавлен 16.04.2014

  • Правила решения систему линейных алгебраических уравнений методом Гаусса и Крамера. Порядок разложения вектора. Формирование уравнения медианы. Вычисление косинуса внутреннего угла треугольника. Расчет угла между ребрами пирамиды и площади грани.

    контрольная работа, добавлен 25.08.2015

  • Применение приближенных (численных) способов нахождения корней системы матричных уравнений с большим числом неизвестных. Содержание методов простых итераций, Зейделя, релаксации, используемых в решении уравнений. Теорема сходимости итерационного процесса.

    лекция, добавлен 21.09.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.