О транзитивности принадлежности для самопринадлежащих множеств

Описание свойства транзитивности принадлежности для самопринадлежащих множеств. Доказательство теоремы о непротиворечивости теории множеств с самопринадлежностью. Алгебра скобок единого и многого. Отношение части и целого. Приложение к доказательству.

Подобные документы

  • Основной аппарат и реализация вариационного подхода для нелинейных эллиптических задач. Получение теорем существования для резонансных краевых задач, установка условий корректности и правильности решений, доказательство устойчивости множеств решений.

    автореферат, добавлен 10.12.2013

  • Понятие и сущность гладкой поверхности, порядок и принципы определения ее площади. Вычисление поверхностных интегралов первого и второго порядка. Скалярное поле как совокупность двух множеств: множества точек пространства и соответствующих чисел.

    лекция, добавлен 18.10.2013

  • Понятие линейного, нормированного и предгильбертового пространства. Последовательности точек метрического пространства, предел и непрерывность его отображений. Необходимое условие компактности множеств. Принцип Баноха сжимающих отображений, их свойства.

    лекция, добавлен 08.11.2015

  • Характеристика разностного метода для решения задач и дифференциальных уравнений с коэффициентами, построенными по сетки или сеточной функции. Исследование формул, применяемых для определения переменной величины множеств в аналоговых пространствах.

    презентация, добавлен 30.10.2013

  • Обозначение множества и его графическое изображение. Операции пересечения, объединения, дополнения и прямого произведения множеств. Их равенство – источник недоразумений. Исследование социального положения жителей села с помощью математической теории.

    творческая работа, добавлен 30.05.2015

  • Основные определения и понятия нечетких множеств, используемые для преобразования информации. Свойства нечетких отношений и операторы преобразований. Обсуждение вопросов измерения нечеткости, которая выражается в терминах метрического расстояния.

    статья, добавлен 28.10.2018

  • Принципы построения пропозициональной логики. Способы исчисления высказываний с помощью алгебры. Субъектно-предикатная структура утверждений. Методы резолюции в логике предикатов. Функционирование теории множеств в системе аксиом. Виды алгоритмов.

    учебное пособие, добавлен 15.01.2016

  • Характерные признаки фрактальных множеств. Построение Канторова множества, снежинки Коха салфетки Серпинского при помощи L-систем. Визуализация "замощение треугольниками". Описание программного обеспечения "doLsys". Способы анимации фрактальных фигур.

    дипломная работа, добавлен 29.10.2024

  • Рассмотрение элементов теории графов. Характеристика множеств и операций над ними. Основные законы комбинаторики. Основы построения матрицы смежности. Геометрическая реализация графов. Исследование ключевых особенностей логики высказываний и операций.

    курс лекций, добавлен 01.04.2016

  • История возникновения аксиоматического метода в математике и в гуманитарных науках. Решение учебно-исследовательских задач в университете с использованием систем компьютерной математики. Применение теории нечетких множеств в гуманитарных исследованиях.

    статья, добавлен 17.07.2018

  • Построение регуляризирующих операторов для решения интегральных уравнений и систем уравнений Фредгольма первого рода. Доказательство теорем единственности и получение оценки устойчивости для таких уравнений в разных семействах множеств корректностей.

    автореферат, добавлен 23.11.2017

  • Возникновение теории вероятностей как науки. Аксиоматический подход и элементарные понятия теории множеств. Операции сложения и умножения событий. Решение типовой задачи на формулу Байеса. Формула полной вероятности в обеспечении качества продукции.

    контрольная работа, добавлен 25.05.2015

  • Основы теории множеств. Логические операции над высказываниями. Равносильные преобразования формул. Способы задания булевой функции. Метод карт Карно. Двоичное сложение и полином Жегалкина. Кванторные операции над одноместными и двуместными предикатами.

    методичка, добавлен 24.09.2019

  • Общая математическая модель функционирования системы физической защиты объектов на основе теории множеств. Использование композиции соответствий и метода анализа иерархий. Описание нечетких соответствий. Анализ композиции нечетких гиперграфов модели.

    статья, добавлен 11.01.2020

  • Великая теорема Ферма как самый большой контраст между простотой формулировки и сложностью доказательства. Утверждение Ферма–Майзелиса. Некоторые сведения из теории графов и определения. Универсальное доказательство неразрешимости уравнения теоремы.

    реферат, добавлен 30.03.2017

  • Основные понятия теории графов. Свойства маршрутов, цепей, циклов. Понятие гамильтонова графа. Доказательство теоремы Дирака. Постановка задачи о коммивояжере и описание известных способов ее решения. Практические приложения задачи. Метод ветвей и границ.

    курсовая работа, добавлен 06.07.2014

  • Теория множеств. Способы задания, операции над множествами. Основные понятия соответствия и функции. Понятие мультимножества. Основные понятия теории графов, способы их задания. Сильно связанные графы и их компоненты. Планарность и двойственность.

    учебное пособие, добавлен 08.02.2015

  • Формулировка теоремы Ферма из теории алгебраических чисел. Доказательство данной теоремы методом "от противного": сначала предполагается выполнение основного равенства теоремы, а затем показывается его нарушение, приводящее к выполнению утверждения.

    статья, добавлен 27.09.2012

  • Примеры неприменимости метода неполной индукции в математике. Теоремы, приводящие к доказательству методом математической индукции. Описание способов доказательств утверждений в математике. Открытие общих закономерностей наблюдениями и методом индукции.

    контрольная работа, добавлен 24.11.2012

  • Противостояние логицизма и интуиционизма, формализма и теоретико-множественных оснований математики. Применяемые в математике аксиомы выбора, закон исключенного третьего, аксиомы сводимости, понятия теории множеств. Значение прикладной математики.

    статья, добавлен 11.02.2021

  • Аксиомы сравнения, противоречия, границ, воздействия. Аксиомы структуры информационного обмена. Свойства комплексных чисел и показательной функции. Способы укладки отрезков. Неожиданности комплексных чисел. Алгебраическая запись взаимодействия объектов.

    учебное пособие, добавлен 10.03.2017

  • Описание доказательства теоремы Хоукинга, согласно которой в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Особенности этапов решения данной теоремы путем разложения прямоугольного треугольника на два равнобедренных.

    задача, добавлен 23.02.2011

  • Обоснование значимости теоремы Пифагора, ее применение в геометрии. Биографические факты из жизни Пифагора. Обзор математических трактатов Древнего Китая, чертеж и доказательство теоремы Пифагора в них. Доказательство теоремы Пифагора в трудах Евклида.

    реферат, добавлен 12.09.2010

  • История возникновения счета и чисел. Число, как основное понятие математики. Исследование множеств чисел с применением кругов Эйлера. Множество натуральных чисел и их свойства. Дроби в Древнем Египте. Четыре действия арифметики. Десятичные дроби.

    реферат, добавлен 21.03.2013

  • Вещественное число порядка как класс эквивалентности, если между элементами этих множеств можно установить взаимно однозначное соответствие. Построение вещественных чисел исходя из рациональных чисел согласно теории немецкого ученого Георга Кантора.

    статья, добавлен 29.03.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.