Исследование влияния механизмов внимания в задаче обнаружения текста с использованием искусственных нейронных сетей

Применение механизмов внимания к задаче обнаружения текста с использованием нейронных сетей, их влияние на результат работы сети. Механизм внимания, позволяющий сканировать значения признаков, фокусируя модель на действительно важных свойствах объекта.

Подобные документы

  • Методики компонентного проектирования нейронных сетей для обработки баз знаний, представленных семантическими сетями. Использование унифицированной модели нейронной сети и компонентном подходе к работе с нейронными сетями; библиотека НС-компонент.

    статья, добавлен 06.03.2019

  • Решение стегоанализа с применением искусственных нейронных сетей. Описание методики стеганографического анализа изображений, которая состоит в синтезе сигнатурного и статистического алгоритмов. Методика распознавания скрытой информации в изображениях.

    статья, добавлен 16.05.2022

  • Нейронная сеть – система связанных и взаимодействующих друг с другом искусственных нейронов. В статье проведен анализ алгоритмов обучения нейронных сетей. Приведены последовательность действий при обучении этими алгоритмами, их достоинства и недостатки.

    статья, добавлен 23.01.2021

  • Разработка прогнозирующих систем: понятие прогноза и цели его использования, методы прогнозирования, модели временных последовательностей. Модели нейронных сетей: Маккалоха, Розенблата, Хопфилда. Нейронные сети и алгоритм обратного распространения.

    курсовая работа, добавлен 30.11.2009

  • Рассмотрение искусственных нейронных сетей, различий между их базовыми архитектурами. Способность к обучению как основное свойство мозга. Оценка эволюции технологий телекоммуникации. Особенности развития организаций, занимающихся внедрением сетей.

    реферат, добавлен 19.12.2014

  • Аналитический обзор нечетко-нейронных сетей, анализ методов обучения. Анализ программных комплексов для разработки систем прогнозирования. Разработка структурной схемы на базе нечетко-нейронных сетей, осуществление обучения разработанной системы.

    дипломная работа, добавлен 14.12.2019

  • Исследование решения задачи автоматического распознавания коридоров набивных стеллажей вилочными погрузчиками с использованием нейронной сети. Описания принципа работы и структуры нейронной сети. Проверка работоспособности построенной нейронной сети.

    статья, добавлен 25.02.2019

  • Методика прогнозирования селекционной ценности зерновых культур на стадии селекции. Алгоритм на основе искусственных нейронных сетей. Прогноз селекционной ценности пищевого сырья из 210 образцов тритикале коллекции урожая, оценка его эффективности.

    статья, добавлен 17.11.2018

  • Опыт применения нейронных сетей в экономических задачах. Моделирование эмпирических закономерностей по ограниченному числу экспериментальных и наблюдаемых данных. Табличный метод - основа искусственного интеллекта. Мониторинг банковской системы.

    реферат, добавлен 15.03.2009

  • Разработка методики для автоматической сегментации спутниковых снимков по нескольким классам (здания, реки, дороги) на базе сверточных нейронных сетей. Особенности подготовки изображения для тренировки нейронной сети. Оценка эффективности нейронных сетей.

    статья, добавлен 11.01.2018

  • Задача прогнозирования временных рядов как одна из классических задач, эффективно решаемых с помощью нейронных сетей. Особенности работы с пакетом Neural Network Wizard (создание модели нейронной сети). Правила распознавания цифр на базе нейронной сети.

    лабораторная работа, добавлен 20.02.2012

  • Характеристики нейронных многослойных сетей. Математические эквиваленты нейрофизиологических понятий параметрической и топологической пластичности. Связь степени параметрической пластичности нейронной сети с числом независимо распознаваемых образов.

    статья, добавлен 17.01.2018

  • Изучение принципа работы сверточных нейронных сетей. Исследование современных методов определения направления взгляда. Выбор технологий и библиотек необходимых для разработки приложения. Разработка веб-приложения. Основные типы слоев и методы оптимизации.

    дипломная работа, добавлен 27.08.2020

  • Рассмотрение вопросов, связанных с решением задачи построения и обработки когнитивных структур на основе использования нейронных сетей. Организация специализированной модели, настроенной на решения поставленной задачи "Нейросетевая когнитивная модель".

    статья, добавлен 23.08.2020

  • Понятие и сущность искусственных нейронных сетей. Обучающий алгоритм Видрова-Хоффа. Образование основного стандарта нейроинформатики. Применение кодирования, декодирования и фильтрации. Активация эквивалента однослойной линейной сети, их мощность.

    учебное пособие, добавлен 18.01.2014

  • Анализ применения нейронных сетей для моделирования социальных или биологических систем с помощью программного пакета моделирования. Диагностический анализ изучения алгоритмов обучения нейронных сетей. Формулы для обучения методом наискорейшего спуска.

    презентация, добавлен 03.12.2013

  • Проблема распознавания кривых линий на сложном фоне шумовых точек и близких соседних кривых. Главные требования к обработке в современных экспериментах. Понятие и особенности эластичных нейронных сетей. Робастные методы оценки параметров и их применение.

    статья, добавлен 08.02.2013

  • Разработан и описан алгоритм процесса конвертирования поступающих в программный комплекс исполняемых файлов в черно-белые изображения, позволяющий сформировать собственный набор данных для обучения нейронной сети на основе полученных изображений.

    статья, добавлен 16.05.2022

  • Понятие искусственных нейронных сетей, способы обработки информации человеческим мозгом. Разработка концепции гомеостатической искусственной нейронной сети на основе представлений о гомеостатических механизмах обработки информации в естественных системах.

    статья, добавлен 30.05.2017

  • Искусственные нейронные сети в пропорционально-интегрально-дифференциальных регуляторах. Нелинейное отображение множества входных сигналов в выходные. Структура регулятора с блоком автонастройки. Процесс "обучения" нейронной сети, его длительность.

    статья, добавлен 17.07.2013

  • Модели нейронных сетей относятся к интеллектуальным системам, они позволяют улучшить результаты благодаря самообучению. Рассмотрены исследования по моделированию прогнозов котировок ценных бумаг. Нейронные сети обратного распространения. Описание модели.

    статья, добавлен 17.03.2021

  • Задача аппроксимации ряда динамики, построение функции по конечному набору точек. Особенности минимаксной функции. Фрагмент программы создания и адаптации линейной сети. Результат аппроксимации данных. Традиционные методы сглаживания ряда динамики.

    статья, добавлен 17.07.2013

  • Процесс создания и обучения нейронной сети для задачи классификации изображений собак и кошек с использованием TensorFlow и архитектуры MobileNetV2. Описание подготовки и предобработки данных, включая изменение размеров и нормализацию изображений.

    статья, добавлен 05.09.2024

  • Исследование принципов организации нейроподобных сетей для решения задач искусственного интеллекта. Анализ архитектуры ассоциативно-проективной нейронной сетевой системы. Характеристика процедуры выбора части нейронов для передачи на верхний уровень.

    лекция, добавлен 13.09.2017

  • Обзор искусственных нейронных сетей, состоящих из множества взаимодействующих простых процессоров и представляющих собой устройства параллельных вычислений. Анализ структуры связей детали сетевой конструкции. Вычисления сигналов и значений нейронов.

    лекция, добавлен 21.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.