Интерпретация глубоких нейронных сетей в задачах классификации текстов
Методика разработки состязательных атак, которые основаны на словах и показывают возможность и силу изменения предсказываемого класса нейросети. Анализ особенностей применения регрессионных значений Шепли для интерпретации глубоких нейронных сетей.
Подобные документы
Число итераций, необходимых для обучения искусственных нейронных сетей. Распознавание образов интеллектуальной системой. Повышение качества и гибкости обучения структуры сети. Эффективность модульного принципа в плане уменьшения количества итераций.
статья, добавлен 15.07.2020Применение искусственных нейронных сетей в задаче прогнозирования оставшегося времени безаварийной работы. Предварительная обработка телеметрических данных. Использование аппроксимации обобщенной функции Веибулла. Уменьшение влияния шумовых факторов.
статья, добавлен 29.06.2017Анализ моделей адаптивного поведения. Модель эволюционного возникновения коммуникаций в коллективе роботов. Бионическая модель поискового адаптивного поведения. Основные принципы построения модели адаптивного поведения системы на базе нейронных сетей.
дипломная работа, добавлен 07.08.2018Общая структура топологии применения генетических алгоритмов для обучения нейронных сетей. Методы и алгоритмы предварительной подготовки данных, расчета структуры нейросети и модифицированных методов обучения, проверки работы на валидационной выборке.
статья, добавлен 12.05.2017Разработка методики для автоматической сегментации спутниковых снимков по нескольким классам (здания, реки, дороги) на базе сверточных нейронных сетей. Особенности подготовки изображения для тренировки нейронной сети. Оценка эффективности нейронных сетей.
статья, добавлен 11.01.2018- 106. Разработка устройства для экспертной диагностики систем на основе нечеткой логики нейронных сетей
Определение работоспособности технологической системы по косвенным физическим параметрам. Алгоритмизация диагностики, разработка формальной модели принятия и оценки решений. Создание экспертного устройства нейронных сетей на основе нечеткой логики.
статья, добавлен 15.05.2017 История развития науки о искусственном интеллекте. Области применения исскуственного интеллекта. Некоторые сведения о мозге. Основные теории нейроподобных и нейтронных сетей. Нейроподобный элемент и нейроподобные сети. Классификация нейронных сетей.
реферат, добавлен 01.10.2009Анализ процесса выбора оптимальной архитектуры нейронной сети, которая способна наиболее эффективно определять тональность сообщений на интернет-форумах. Рассмотрение применения искусственных нейронных сетей для решения социально значимых проблем.
статья, добавлен 14.04.2022Анализ вопросов использования нейронной сети для распознавания фигур технического анализа. Сравнение способов формирования входных образов. Конгломерат нейронных сетей для распознавания фигур технического анализа. Трактовка выходов нейронной сети.
статья, добавлен 27.04.2017Подготовка данных, входы и выходы нейросети, изменения котировок. Выбор программного обеспечения: Matlab, Statistica, BrainMaker, NeuroShell Day Trader. Подготовка данных средствами MetaTrader. Знакомство с Matlab и обучения нейросетей в пакете AnfisEdit.
реферат, добавлен 02.12.2011Теоретическое обоснование использования нейронных сетей при распознавании образов. Обоснование необходимости и основные этапы, перспективы разработки устойчивых алгоритмов, которые распознавали бы образы с различным уровнем зашумленных входных образов.
статья, добавлен 26.11.2017Применение механизмов внимания к задаче обнаружения текста с использованием нейронных сетей, их влияние на результат работы сети. Механизм внимания, позволяющий сканировать значения признаков, фокусируя модель на действительно важных свойствах объекта.
дипломная работа, добавлен 01.12.2019Проект системы поддержки принятия решений для рубрикации научных текстов с учетом их особенностей. Исследование искусственных нейронных сетей, логистической регрессии. Анализ данных, извлечение признаков из текстов, разработка настольного приложения.
дипломная работа, добавлен 02.09.2018Доказательство возможности аппроксимации непрерывных функций нейронными сетями в работах Колмогорова и Хехта Нильсена. Эффективность применения генетических алгоритмов к решению проблемы исследования таких сетей. Выбор операторов мутации и кроссовера.
статья, добавлен 22.08.2020Автоматизация проектирования локальных сетей Ethernet и ATM при построении вычислительных сетей, предназначенных для передачи разнородного трафика. Синтез структур Ethernet и ATM с помощью генетических алгоритмов нейронных сетей. Типы коммутации пакетов.
статья, добавлен 06.05.2018Характеристика обучающих выборок, которые используются для обучения искусственных нейронных сетей. Сравнительный анализ значений медианы, полученных при проведении теста Краскела–Уоллиса для определения результатов обучения программных приложений.
статья, добавлен 28.11.2016Понятие, структура и основные компоненты нейронных сетей, применение множества простых процессоров для их построения. Варианты наиболее распространенных архитектур искусственных НС. Правило вычисления сигнала активности и их распространение в сети.
лекция, добавлен 28.08.2013Задача прогнозирования временных рядов как одна из классических задач, эффективно решаемых с помощью нейронных сетей. Особенности работы с пакетом Neural Network Wizard (создание модели нейронной сети). Правила распознавания цифр на базе нейронной сети.
лабораторная работа, добавлен 20.02.2012Процесс обучения нейросети-классификатора, сравнения эффективности теоретических методов оптимизации со стохастическими. Подтверждение преимуществ и потенциальных возможностей. Основные свойства задач (баз данных) и размеры нейронных сетей для них.
статья, добавлен 08.02.2013Краткий обзор методов классификации, особенности их использование при проведении специализированных медицинских обследований. Применение дискриминантного анализа для выявления разницы между выборками. Специфика организации и топологии нейронных сетей.
статья, добавлен 28.02.2016Определение понятия и характеристика архитектуры нейросети. Теория искусственного интеллекта Мак-Каллока и Питса. Изучение основ нейроматематики. Перцептрон и сеть Хопфилда. Самоорганизующаяся карта Коохонена. Пример кластеризации в выходном слое.
презентация, добавлен 14.12.2017Рассмотрение и характеристика главных особенностей метода использования искусственных нейронных сетей. Ознакомление со схемой Персептрона. Исследование и анализ основных принципов распознавания образов, которые применяются в вычислительной технике.
контрольная работа, добавлен 26.05.2016Исследование принципов организации нейроподобных сетей для решения задач искусственного интеллекта. Анализ архитектуры ассоциативно-проективной нейронной сетевой системы. Характеристика процедуры выбора части нейронов для передачи на верхний уровень.
лекция, добавлен 13.09.2017Определение видов нейронных сигналов, методики обучения и тестирования в зависимости от типа используемой автономной навигационной системы. Рассмотрение случаев, когда счисление ведётся на основе данных от лага, гирокомпаса или инерциальной системы.
статья, добавлен 28.10.2018Рассмотрение положений теории нейронных сетей, анализ разнообразия их архитектур. Методы и алгоритмы предварительной обработки данных. Моделирование структуры нейросети. Разработка алгоритмов обучения нейронной сети для уменьшения ошибки тестирования.
дипломная работа, добавлен 30.08.2016