Некоторые классы конечных групп с примарными пересечениями неинцидентных подгрупп
Группы с различными условиями инцидентности. Конечные ненильпотентные разрешимые PIN-группы. Прямое произведение циклических групп простых порядков. Группы, содержащие не более одной собственной непримарной подгруппы. Элементарная абелева группа.
Подобные документы
Описание генетического кода симметрической группы. Новый подход к построению генетических кодов симметрической группы. Представление элементов группы в виде произведения циклов. Построение ортогональных базисов в пространстве комплекснозначных функций.
статья, добавлен 07.08.2020Понятие генерирующего многочлена. Построение генерирующих многочленов для прямого произведения группы меньших порядков, конкретных многочленов с рациональными коэффициентами для циклической группы восьмого порядка. Математическое описание их свойств.
контрольная работа, добавлен 25.11.2017Построение стереографической проекции всех элементов симметрии точечной группы в стандартной установке с использованием сетки Вульфа. План пространственной группы симметрии. Определение видов многогранников. Расчет кратности системы точек проекции.
контрольная работа, добавлен 06.03.2012Многочлен, задающий изолированную особенность. Изоморфизм фробениусовых многообразий теории Саито. Зеркальная симметрия для простых эллиптических особенностей с действием группы. Аксиоматическое определение многообразия фробениусовой пары многочленов.
диссертация, добавлен 28.12.2016Изучение различных алгебраических систем. Теория конечных групп симметрий. Группы матриц, перестановок. Отношение порядка в упорядоченном поле. Изучение в математике операций над элементами множества произвольной природы, сложение и умножение чисел.
контрольная работа, добавлен 17.06.2014Изучение понятия аффинной структуры в контексте однородного пространства и понятия группы, которое возникло путем абстракции из понятия группы преобразований, и полностью проявляет себя, когда рассматривается действие группы на некотором множестве.
реферат, добавлен 26.02.2010Изучена методика выполнения оценивания компетентности группы экспертов на стадии выявления знаний. Суть методики сводится к тому, что ряду специалистов предлагается высказать мнение о составе экспертной группы. По результатам опроса составляется матрица.
практическая работа, добавлен 08.02.2024- 33. Алгебра
Линейные уравнения и операции над матрицами. Обратная матрица и матричные уравнения. Линейные пространства, ранг матрицы и его приложения. Действия с комплексными числами. Группы, подгруппы, порядки элементов. Многочлены от одной и нескольких переменных.
курс лекций, добавлен 21.11.2011 Простейшие свойства формаций, их основные обозначения и теоремы. Проекторы конечных групп. Формации Гашюца. Характеристика основных позиций теории формации и приведение конкретных примеров. Строение формаций порожденных группами и сущность корадиалов.
дипломная работа, добавлен 19.04.2011Точечная группа симметрии как группа симметрии, операции которых оставляют хотя бы одну точку пространства на месте. Формульные элементы симметрии. План точечной группы 4 mm. Значение углов между элементами симметрии. Пространственная группа симметрии.
контрольная работа, добавлен 04.11.2011Разложение подстановок в произведение циклов с непересекающимися орбитами. Исследование наборов состоящих из одного и того же количества элементов, отличающихся только порядком следования элементов. Рассмотрение симметрической группы третьей степени.
курсовая работа, добавлен 23.04.2024Применение неразрешимых и трудноразрешимых алгоритмических проблем теории групп в качестве основы обозначенного построения. Исследование бесконечных групп и построение на их основе возможно односторонних функций. Методы теории групп и теории сложности.
статья, добавлен 19.12.2019Центральная предельная теорема для экстремальных характеров бесконечной симметрической группы и для планшерелевских представлений бесконечной унитарной группы. Анализ перемежающихся последовательностей Керова и случайных матриц. Доказательства теорем.
диссертация, добавлен 28.12.2016Биография и научная деятельность М.А. Наймарка. Теория самосопряженных расширений симметрических операторов. Нормированные кольца и представление об алгебрах. Линейные дифференциальные операторы. Теория групп, группы Ли и теоремы Гельфанда-Наймарка.
реферат, добавлен 03.06.2015Конечные вероятностные модели. Случайные переменные, среднее и дисперсия. Задачи о спичечных коробках, о разорении игрока, о планировании эксперимента, о наибольшей дисперсии. Двоичные марковские последовательности. Случайное блуждание по плоской решетке.
книга, добавлен 25.11.2013Теоретические аспекты понятия арифметической операции. Краткая характеристика свойств ассоциативности, коммутативности и свойства наличия обратного элемента. Закон сокращения и простейшие свойства алгебраических систем, определение группы и подгруппы.
реферат, добавлен 30.10.2010Основные свойства изоморфных подгрупп некоторой абстрактной группы G – циклического изоморфизма. Рассмотрение примера матричного представления циклического изоморфизма четвертого уровня. Простейшие решения системы уравнений циклического изоморфизма.
статья, добавлен 03.05.2012Проблема классификации парадоксов (анализ). Классификация парадоксов на группы А и В. Фиксация "пограничные парадоксы", которые демонстрируют проблематичность Рамсеевой классификации. Экспликация парадоксов. Парадокс наименьшего неопределимого ординала.
статья, добавлен 30.09.2020- 44. Построение пространства прямой перспективы на примере рисунка с натуры группы геометрических тел
Линейно-конструктивный рисунок группы геометрических тел. Объемно-пространственные построения в рисунке с натуры. Соединение горизонтального и фронтального видов линии горизонта. Технологическая последовательность объемно-пространственных построений.
статья, добавлен 10.10.2021 Описание истории создания фундаментальной математической теории − теории групп – французским математиком Э. Галуа. Исследование проблемы разрешимости алгебраических уравнений, вопрос о существовании их решений в радикалах. Сущность теории групп Галу
статья, добавлен 26.04.2019Переработка информации с помощью конечных автоматов. Детерминированные конечные автоматы и автоматные языки. Характеристика свойств замкнутости класса автоматных языков. Регулярные выражения как средство для построения алгебраических описаний языков.
курс лекций, добавлен 20.05.2014Определение булевых функций. Замкнутые классы, теорема Поста. Моделирование релейно-контактных схем и сумматоров. Основные положения математической логики. Неформальное определение алгоритма. Конечные автоматы и некоторые классические алгоритмы.
учебное пособие, добавлен 30.07.2013Обзор комбинаторно-геометрических интерпретаций спорадических групп. Исследование особенностей автоморфизмов блок-схем специального вида. Геометрические интерпретации спорадических групп в виде диаграмм. Рассмотрение сущности классификационной теоремы.
статья, добавлен 26.04.2019Криптология как наука, занимающаяся методами шифрования и дешифрования. Выделение мультипликативной группы кольца вычетов. Группа в математике и ее множественные элементы с определённой на нём ассоциативной бинарной операцией. Свойства колец и полей.
курс лекций, добавлен 11.12.2014Условия конечности и факторизация в бесконечных группах. Биография воспитанника Пермской алгебраической школы С.Н. Черникова доктора физико-математических наук Д.И. Зайцева (1942-1990 гг.). Группы со слабыми условиями максимальности и минимальности.
статья, добавлен 26.04.2019