Непрерывность функции

Непрерывность функции в точке и непрерывность на отрезке. Свойства функций, непрерывных в точке и на отрезке. Точки разрыва функции, их классификация. Поиск разрыва функций и определение их типа. Точки, в которых условие непрерывности не выполняется.

Подобные документы

  • Изучение единственной абсолютно монотонной функции наилучшего равномерного приближения на отрезке. Использование специального критерия единственности наилучшего приближения клином. Применение теоремы для других конусов, состоящих из непрерывных функций.

    статья, добавлен 07.08.2020

  • Определение функции и графика функции. Область определения и область значений функции, ее нули и экстремумы. Общая схема исследования функций: признаки возрастания и убывания, критические точки. Место и роль математики в менеджменте и экономике.

    реферат, добавлен 23.04.2011

  • Разработка программного модуля, ориентированного на нахождение минимума целевой функции по методу Фибоначчи на заданном отрезке, с заданным количеством вычислений и точностью. Тестирование результатов работы с помощью нескольких функций и их сравнение.

    реферат, добавлен 11.11.2014

  • Построение и анализ многочлена Тейлора. Примеры разложения функции по формуле Маклорена. Степенной порядок малости. Определение степени роста бесконечно большой величины в окрестности точки разрыва. Расчёт асимптоты графика функции на бесконечности.

    презентация, добавлен 26.09.2017

  • Введение в анализ и дифференциальное исчисление функции одного переменного. Поиск промежутков выпуклости и точки перегиба заданной функции. Дифференциальное исчисление функций и его приложение. Интегральное исчисление функции одного переменного.

    контрольная работа, добавлен 09.09.2015

  • Разложение функции по формуле Маклорена и в ряд Тейлора. Степенной порядок малости. Рост бесконечно большой в окрестности точки разрыва. Разложение по формуле Маклорена в окрестности бесконечно удаленной точки. Асимптоты графика функции на бесконечности.

    презентация, добавлен 28.09.2017

  • Определение гамма-функции. Интегральное представление, область определения, полюсы. Свойства, непрерывность. Представление Ганкеля через интеграл по петле. Предельная форма Эйлера. Применение гамма-функции в теории вероятностей и математической статистике

    курсовая работа, добавлен 08.06.2017

  • Неравенства типа Колмогорова и их роль при решении задач теории приближения. Исследование возможности продолжения произвольной функции f, принадлежащей к множеству L с любого отрезка I монотонности f на всю ось с сохранением норм f и f(r) на отрезке.

    статья, добавлен 30.10.2016

  • Определение ранга расширенной матрицы системы. Решение системы по формулам Крамера. Средства векторной алгебры. Разложение вектора в базисе по векторам. Уравнение прямой, проходящей через две точки. Определение знаков неравенств. Точки разрыва функции.

    контрольная работа, добавлен 03.02.2017

  • Характеристика функций и графиков функций: определения и понятия. Функции и их свойства: линейная, обратной пропорциональности, квадратичная, степенные. Движение функций по осям координат. Влияние модуля на функции: модуль и обратная пропорциональность.

    реферат, добавлен 15.08.2014

  • Понятие числовой функции. Определение числовой последовательности как числовой функции на множестве натуральных чисел. Исследование функций на четность и нечетность. Поиск нулей и промежутков, понятие метода интервалов. Промежутки возрастания функции.

    лекция, добавлен 27.04.2017

  • Понятие векторной функции. Особенности нахождения предела непрерывности, производной и интеграла вектор-функции. Использование векторных функций в криволинейной системе координат. Характеристика приложения векторных функций в скалярном и векторном поле.

    курсовая работа, добавлен 12.01.2021

  • Изучение четности и нечетности функции. Анализ нахождения наименьшего положительного периода функций. Определение промежутков знакопостоянства. Возрастание и убывание функций. Нахождение точек экстремума. Характеристика алгоритма исследования функции.

    презентация, добавлен 22.03.2021

  • Критерии определения независимости и ортогональности собственных векторов. Свойства расстояния. Простейшие операции над множествами. Последовательности и функции в пространстве Rn. Теорема Гейне. Непрерывность на множестве. Понятие частных производных.

    курсовая работа, добавлен 17.01.2011

  • Выявление вида неопределенности и вычисление предела функций. Формулы производной степени и дроби функции, исчисление производной. Определение непрерывной числовой прямой и исследование функции, её критические точки. Вычисление неопределенных интегралов.

    контрольная работа, добавлен 20.01.2013

  • Точки на комплексной плоскости, элементарные функции комплексного переменного. Характеристика и отличительные черты однолистных и многозначных функций. Теорема Коши-Римана, понятие линейного отображения. Определение ряда Лорана, изолированные точки.

    лекция, добавлен 29.09.2014

  • Равномерное стремление к предельной функции. Дифференцирование под знаком интеграла. Случай, когда пределы интеграла зависят от параметра. Применение правила Лейбница к вычислению производной по параметру интеграла. Исследование функции на непрерывность.

    контрольная работа, добавлен 13.10.2013

  • Введение в математический анализ. Дифференциальное исчисление функций одной и нескольких переменных. Исследование характера точек разрыва для заданной функции. Определение частных производных второго порядка, интервалов выпуклости и вогнутости функции.

    контрольная работа, добавлен 23.03.2022

  • Неявные функции, условие их существования и дифференцируемости. Касательная плоскость и нормаль к поверхности. Геометрический смысл производных и дифференциала. Градиент функции в точке координат. Рассмотрение значения производной по направлению.

    лекция, добавлен 26.01.2014

  • Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.

    курс лекций, добавлен 24.04.2009

  • Основные условия возрастания функции на заданном отрезке. Теорема о достаточном условии убывания функции, ее геометрическая интерпретация. Порядок нахождения интервалов монотонности. Анализ взаимосвязи между значением аргумента и значением функции.

    презентация, добавлен 21.09.2013

  • Годограф вектор функции. Проекции вектора на оси прямоугольной декартовой системы координат в пространстве. Предел, непрерывность, производная вектор-функции. Правила дифференцирования. Касательная, нормаль к плоской кривой. Кривизна, радиус кривизны.

    реферат, добавлен 02.10.2013

  • Предел последовательности. Необходимое условие сходимости бесконечной числовой последовательности. Вычисление предела последовательности. Бесконечно малые последовательности. Связь между бесконечно малыми и сходящимися последовательностями, их свойство.

    контрольная работа, добавлен 03.03.2012

  • Понятие производной по аналогии с мгновенной скоростью. Предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю. Скорость изменения функции в заданной точке. Прямолинейное движение материальной точки.

    контрольная работа, добавлен 20.02.2017

  • Интегральное и дифференциальное исчисления функций одной переменной. Числовые множества. Предел и непрерывность функций. Производная и дифференциал. Кривизна и кручение кривой. Интегрирование рациональных дробей. Критерий Коши собственного интеграла.

    учебное пособие, добавлен 31.03.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.