Системы счисления Древнего мира
Совокупность правил наименования и изображения чисел с помощью набора символов. Способы записи чисел в виде, удобном для прочтения и арифметических операций. Первые понятия математики. Римская нумерация как примером непозиционной системы счисления.
Подобные документы
Число как результат счета и измерения величины. Натуральный ряд чисел, их свойства. Особенности десятичной системы счисления. История развития числа в филогенезе. Этапы знакомства дошкольников с двузначными числами (по методике Е.В. Соловьевой).
контрольная работа, добавлен 14.01.2017Постановка задачи. Анализ системных функций. Анализ унитарной системы счисления. Синхронизация унитарных кодов. Оптимизация распределения неравновероятных сообщений. Избыточность унитарного кодирования. Оценка достоверности информационного обмена.
автореферат, добавлен 14.08.2008Обращение к истокам зарождения математики. Описание истории возникновения счета и измерения как средств сравнения различных чисел, длин, площадей и объемов. Рассмотрение древних способов записи чисел, возникновения понятий о геометрических фигурах.
реферат, добавлен 04.09.2014Ознакомление с ключевыми этапами становления математики. Формирование арифметики, геометрии и алгебры. Предпосылки создания системы счисления. Значение вавилонской и египетской цивилизаций в развитии математики. Анализ греческих методов вычислений.
реферат, добавлен 23.05.2016История математических исследований простых чисел как натуральных чисел, имеющих два различных натуральных делителя - единицу и самого себя. Представление простых чисел в виде значений квадратных многочленов. Описание спирали простых чисел С.М. Улама.
статья, добавлен 28.03.2019Понятие делимости чисел, изучение свойств делимости. Признаки делимости чисел, изучаемые и не изучаемые в школе. Овладение в совершенстве признаками делимости чисел, изучаемых на уроках математики и вне школьной программы. Применение признаков делимости.
контрольная работа, добавлен 11.10.2021Математические представления евреев в библейскую эпоху. Изобретение алфавитного принципа обозначения чисел. Особенности позиционной системы счисления в Древней Индии, некоторые имена и книги индийских математиков. Достижения китайских математиков.
реферат, добавлен 16.12.2012Понятие простого числа и арифметической прогрессии. Обоснование существования многого количества арифметических прогрессий, образованных из разных простых чисел. Исследование простых чисел в вопросе их принадлежности к арифметической прогрессии.
статья, добавлен 17.02.2019Зарождение счета в глубокой древности. Возникновение и формирование понятия натурального числа. Обоснование системы натуральных чисел. Натуральные числа, основные функции натуральных чисел. Эволюция развития и значение нуля для современной математики.
реферат, добавлен 27.03.2015Непозиционное большинство систем счёта древности. Абаки древних римлян - счётные доски, которые дожили и до наших дней и уступили свои позиции электронным калькуляторам. Система счисления как способ изображения чисел. История появления систем отсчета.
презентация, добавлен 12.07.2015Розгляд основних прикладів застосування чисел Фібоначчі в геометрії і демонстрації використання формули Біне на факультативних та гурткових заняттях з математики. Оцінка характеристики чисел Фібоначчі та золотої пропорції як "діамантів" математики.
статья, добавлен 14.07.2016Греческая система счисления (аттическая): использование букв алфавита. Дедуктивный характер греческой математики, изобретенный Фалесом. Решение технических задач с помощью математики александрийского периода. Современные достижения в области математики.
реферат, добавлен 06.07.2009Выделение простых чисел как важная задача математики, основные алгоритмы проверки чисел на простоту. Понятие делимости целых чисел, свойства делимости, алгоритм Евклида. Основные критерии простоты целых чисел, свойства и теоремы из теории сравнений.
курсовая работа, добавлен 03.05.2014Число как основное понятие математики. Натуральные числа, их функции. Вавилонские шестидесятеричные дроби. Нумерация и дроби в Древней Греции. Развитие идеи отрицательного количества в Европе. Векторные, действительные рациональные и иррациональные числа.
реферат, добавлен 02.03.2017- 90. Числовые системы
Аксиоматическая теория натуральных чисел, рациональных, действительных, комплексных чисел и кватернионов. Характеристика рационального числа через его представление в виде десятичной дроби. Комплексные двойные и дуальные числа. Усиленная аксиома Кантора.
учебное пособие, добавлен 16.06.2015 Вавилония и Египет. Древнеегипетская система счисления, геометрия. Греческая математика. Приведение задач к геометрическому виду. Работы Евдокса. Александрийский период. Великие александрийские математики: Эратосфен, Архимед, Гиппарх, Птолемей, Диофант.
реферат, добавлен 06.09.2008Очерк зарождения и эволюции математических действий с числами, давших опору системе комплексных чисел и арифметике, как науке. Изучение особенностей геометрических выражений чисел. Обзор основных свойств дробей и операции над рациональными числами.
курсовая работа, добавлен 05.10.2013Системы общих комплексных чисел. Решение уравнений второй и высших степеней. Применение двойных чисел, формулы их сложения, вычитания, умножения и деления двойных чисел. Ориентированные прямые плоскости Лобачевского. Предельный случай пересекающих прямых.
реферат, добавлен 30.11.2015Характеристика совершенных чисел как натуральных чисел, равных сумме всех своих собственных делителей (то есть всех положительных делителей, отличных от самих чисел). Изучение основных свойств и операций с совершенными числами, анализ их истории.
презентация, добавлен 20.10.2016Этапы разработки системы исчисления в Древней Греции, создание дробей в Египте и Вавилоне. Обсуждение арифметической природы мнимых чисел, возможности дать им геометрическое обоснование в течение XVII века. Геометрическое истолкование комплексных чисел.
реферат, добавлен 21.11.2010Польза мнимых чисел при решении кубических уравнений. Полное геометрическое истолкование комплексных чисел и действий над ними. Основные правила возведения в n–ю степень и извлечения корня n–й степени для комплексных чисел. Развитие теории чисел.
презентация, добавлен 05.10.2015Закон сохранения количества чисел джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Изоморфные свойства рядов четных и нечетных чисел натурального ряда. Определение простоты произвольного целого числа и факторизация.
учебное пособие, добавлен 15.09.2012Рассмотрение математики как науки о структурах, порядке и отношениях. Изучение творений Диофанта и задач Эвклида. Изобретение позиционной системы счисления в Индии. Характеристика роли в развитии русской науки книги "Арифметика, или наука числительная".
презентация, добавлен 05.11.2013Понятие числового промежутка как множества всех чисел, удовлетворяющих данному условию. Специфика графического изображения и математической записи числовых промежутков, их разновидности и способы объединения. Сводная таблица числовых промежутков.
презентация, добавлен 16.10.2013Розгляд історії математики як інтеграційної основи навчання курсу алгебри майбутніх учителів математики. Використання методів геометричної алгебри при сумуванні чисел натурального ряду. Знаходження суми послідовних непарних чисел, починаючи з одиниці.
статья, добавлен 02.02.2018