Однополосный гиперболоид

Понятие поверхности второго порядка как геометрического места точек, декартовы прямоугольные координаты которых удовлетворяют заданному уравнению. Классификация поверхностей второго порядка. Примеры записей уравнения однополостного гиперболоида.

Подобные документы

  • Исследование аналога второй краевой задачи для уравнения в частных производных с дискретным отклонением аргумента. Проведение доказательства разрешимости задачи методом разделения переменных. Условия, при которых задача имеет более одного решения.

    статья, добавлен 31.07.2018

  • Понятие эллипсоида, схема его сечения координатными плоскостями. Описание однополостного гиперболоида, его исследование с помощью сечений, эллиптический параболоид вращения. Сущность и отличительные черты гиперболического параболоида, его сечения.

    презентация, добавлен 13.06.2015

  • Сущность построения математической модели экономического процесса. Геометрическое истолкование дифференциального уравнения. Задача Коши. Общие свойства решений линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами.

    курсовая работа, добавлен 17.01.2011

  • Обыкновенные дифференциальные уравнения (ОДУ) первого порядка, разрешенные относительно производной. Интегрирование ОДУ первого порядка. Доказательство теоремы Коши-Пикара о существовании и единственности решения задачи Коши для ОДУ первого порядка.

    курсовая работа, добавлен 13.11.2013

  • Общий и частный случаи стратификации. Внешний и внутренний потенциалы эллипсоида с гомотетическими слоями. Семейства однополостных и двуполостных гиперболоидов. Асимптотический конус второго порядка. Свойства обычного ньютоновского потенциала.

    курсовая работа, добавлен 10.02.2013

  • Вычисление приближенных решений обыкновенного дифференциального уравнения 1 порядка. Вектор решения по методам Эйлера и Рунге-Кутты. Расчет погрешности приближенных решений. Построение графиков, демонстрирующих методы решений ОДУ второго порядка.

    контрольная работа, добавлен 05.12.2013

  • Понятие и структура матрицы второго порядка, принципы и порядок ее формирования, отличительные черты от матрицы третьего порядка. Сущность и характерные свойства определителей. Методика вычисления определителя i-го порядка. Применение метода Крамера.

    лекция, добавлен 12.03.2013

  • Определители второго порядка, их особенности. Примеры решения систем двух уравнений с двумя неизвестными методом определителей. Решение систем из трех линейных уравнений с тремя неизвестными методом определителей. Основные свойства определителей.

    реферат, добавлен 23.11.2011

  • Стандартные сведения из теории бинарных квадратичных форм и алгебры матриц второго порядка и взаимосвязь понятий вектор-матрицы второго порядка и бинарной квадратичной формы. Идея дискретного эргодического метода на модельном примере. Ключевая лемма.

    автореферат, добавлен 16.02.2018

  • Векторы в пространстве. Деление отрезка в данном отношении. Площадь, объем и ориентация. Плоскости и прямые в пространстве. Прямоугольные системы координат и ортогональные матрицы. Эллипс, гипербола и парабола. Общая теория кривых второго порядка.

    курс лекций, добавлен 02.05.2014

  • Асимптотические представления некоторых типов решений одного класса нелинейных неавтономных дифференциальных уравнений второго порядка и достаточные условия существования таких решений. Медленно меняющаяся функция. Применение правила Лопиталя.

    статья, добавлен 27.06.2016

  • Определение внутреннего угла, уравнения высоты, уравнения медианы, точки пересечения высот треугольника. Построение кривых второго порядка. Решение системы алгебраических уравнений по формулам Крамера и методом Гаусса. Использование модели Леонтьева.

    контрольная работа, добавлен 22.12.2019

  • Линейная и векторная алгебра, уравнения прямой на плоскости. Кривые второго порядка, дифференциальная геометрия и предел функции в точке. Виды интегралов и дифференциальные уравнения в частных производных. Дискретная математика и теория вероятностей.

    учебное пособие, добавлен 11.02.2015

  • Задача Коши и дифференциальные уравнения I порядка. Уравнения с разделяющимися переменными. Интегрирование линейного однородного уравнения. Теорема существования и единственности решения дифференциального уравнения. Частные случаи уравнений II порядка.

    контрольная работа, добавлен 31.03.2015

  • Состояния равновесия, расположенные на кривой второго порядка, являющейся эллипсом или гиперболой. Изоклина бесконечности или нуля системы. Определение индекса Пуанкаре. Точка возврата кривой. Мнимые и действительные корни характеристического уравнения.

    лекция, добавлен 29.07.2013

  • Определение порядка уравнения наибольшим порядком производной. Формулировка теоремы о структуре общего решения линейного уравнения 1-го порядка. Определитель Вронского как главный определитель системы уравнений. Преобразование решения по функции Эйлера.

    лекция, добавлен 14.03.2014

  • Определение цилиндрической поверхности или цилиндра как множества точек пространства, лежащих на прямых, параллельных данной прямой и пересекающих данную плоскую линию. Понятие конической поверхности и характеристика гиперболического параболоида.

    контрольная работа, добавлен 09.03.2015

  • Преобразование декартовых прямоугольных координат на плоскости. Решение задачи приведения уравнения кривой второго порядка к каноническому виду, отыскание канонического уравнения кривой и системы координат. Порядок применения тригонометрических формул.

    контрольная работа, добавлен 29.09.2013

  • Исследование этапов решения начальной задачи для дифференциального уравнения второго порядка со случайными коэффициентами. Расчет формулы для нахождения его математического ожидания в случае равномерного закона распределения случайного коэффициента.

    статья, добавлен 21.06.2018

  • Элементы векторной алгебры. Басизы и координаты. Скалярное произведение. Прямые на плоскости и в пространстве. Замены координат. Конические сечения: эллипс, гипербола, парабола. Теоремы единственности для кривых второго порядка. Пополнение плоскости.

    курс лекций, добавлен 10.09.2016

  • Конечные суммы и их свойства, декартовая и полярная система координат. Комплексные числа и понятие многочлена. Проекция вектора и ее свойства, аналитическая геометрия на плоскости. Канонические уравнения линий второго порядка, матрицы и действия над ними.

    курс лекций, добавлен 20.08.2017

  • Общие понятия, определения и примеры дифференциальных уравнений. Дифференциальные уравнения I порядка, задача Коши. Уравнения с разделяющимися переменными, линейные уравнения. Теорема существования и единственности решения дифференциального уравнения.

    курсовая работа, добавлен 16.04.2015

  • Алгебра матриц, линейные и матричные уравнения. Матрицы в экономических приложениях. Свободные векторы, система координат. Линейные операторы, квадратичные формы и классификация кривых второго порядка. Расположение прямых на плоскости и в пространстве.

    учебное пособие, добавлен 06.02.2011

  • Вид общего уравнения кривой второго порядка. Общее понятие про эллипс, его каноническое (простейшее) уравнение. Вещественная и мнимая полуось гиперболы. Каноническое уравнение параболы. Особенности решения нелинейных неравенств с двумя неизвестными.

    реферат, добавлен 20.04.2012

  • Понятие о простой поверхности. Эллипсоид, гиперболоид и конус вращения, их образование. Касательная плоскость в точке гладкой поверхности. Два перпендикулярных направления, в которых нормальная кривизна принимает минимальное и максимальное значения.

    реферат, добавлен 17.12.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.