Общие системы линейных уравнений
Определение термина "ранг матрицы". Применение элементарного преобразования и приведение матрицы к трапецеидальному виду. Совместимость систем линейных уравнений, описание теоремы Кронекера-Капелли. Решение систем линейных уравнений методом Гаусса.
Подобные документы
Систематизация знаний о системах линейных уравнений. Метод Гаусса как наиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений. Метод удобнее применять на расширенной матрице. Пример решения уравнений.
презентация, добавлен 17.05.2023Вычисление определителя матрицы с помощью ее элементарных преобразований. Решение систем линейных уравнений методом Крамера. Алгебраические дополнения транспонированной матрицы. Решение выражений с помощью свойств скалярного, векторного произведений.
контрольная работа, добавлен 19.01.2014Характеристика матрицы как прямоугольной таблицы чисел, содержащей m строк одинаковой длины (или n столбцов одинаковой длины). Операции над матрицами. Системы линейных алгебраических уравнений. Обратная матрица и ее применение к решению линейных систем.
курсовая работа, добавлен 17.11.2019Раскрытие неопределенности с помощью правила Лопиталя. Поиск производной от функции. Решение системы линейных уравнений методами Гаусса и Крамера. Расширенная матрица системы, уравнение прямой. Решение игры аналитическим и геометрическим способами.
контрольная работа, добавлен 03.07.2012Решение системы линейных уравнений средствами матричного исчисления и с помощью правила Крамера. Вычисление алгебраических дополнений определителя. Сущность метода Гаусса. Формула площади треугольника. Расчет координат нормального вектора плоскости.
контрольная работа, добавлен 21.01.2012Определения и пример нахождения собственного значения и собственного вектора матрицы. Системы линейных алгебраических уравнений. Методы Зейделя и Якоби для решения систем линейных алгебраических уравнений. Программа на C++ для решения СЛАУ методом Якоби.
курсовая работа, добавлен 23.04.2011Прямая и обратная задачи решения системы линейных алгебраических уравнений. Использование результата для синтеза линейных систем при известных воздействиях на них и их реакциях на эти воздействия. Алгоритмы решения многокритериальной задачи оптимизации.
статья, добавлен 14.07.2016Понятие системы линейных алгебраических уравнений с неизвестными. Основная и расширенная матрица системы. Определение совместной и несовместной системы линейных уравнений. Пример решения системы. Вычисление алгебраических дополнений. Формулы Крамера.
лекция, добавлен 26.01.2014Рассмотрение систем линейных уравнений. Общие определения, связанные с понятием матрицы. Алгоритмы составления обратной матрицы. Сложение, умножение матриц на число, обращение и транспонирование матрицы. Сочетательный и переместительный законы.
лекция, добавлен 18.04.2014Определение понятий линейных и квадратных уравнений. Принцип решения данных уравнений: описание общих и частных случаев. Примеры и объяснение этапов решения, составление ответа. Решение линейных и квадратных уравнений с дополнительными условиями.
реферат, добавлен 09.02.2009Исследование системы на совместность методом Гаусса. Решение системы линейных алгебраических уравнений двумя методом Крамера и средствами матричного исчисления. Решение пределов, дифференциальных уравнений, определение производных функций и интегралов.
контрольная работа, добавлен 09.04.2012Матрица коэффициентов при неизвестных. Матричный способ решения системы. Вычисление алгебраических дополнений. Побочные определители системы, разложенные по столбцу свободных членов. Доказательство теоремы Кронекера-Капелли. Изучение понятия определителя.
лекция, добавлен 29.09.2013Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.
учебное пособие, добавлен 16.05.2010Особенности линейных дифференциальных уравнений с постоянными коэффициентами на плоскости. Определение точки равновесия (нулевого решения) однородной системы линейных уравнений. Расчет поведения фазовых кривых линейной автономной системы на плоскости.
контрольная работа, добавлен 29.11.2015- 90. Численные методы
Численное решение нелинейных уравнений. Методы деления отрезка пополам, Ньютона (метод касательных) и простой итерации. Решение систем линейных алгебраических уравнений. Методы Гаусса, обратной матрицы, прогонки, простой итерации (метод Якоби), Зейделя.
методичка, добавлен 26.09.2016 Понятие, применение матрицы в построении экономическо-математических моделей. Системы линейных алгебраических уравнений, решение систем по формулам Крамера. Элементы матричного анализа и аналитической геометрии. Взаимное расположение прямых на плоскости.
учебное пособие, добавлен 06.09.2017Правила решения систем линейных алгебраических уравнений. Понятие ранга матрицы. Преобразования матрицы, в результате которых сохраняется их эквивалентность. Классический метод решения СЛАУ. Теорема об эквивалентности при элементарных преобразованиях.
контрольная работа, добавлен 16.01.2015Действия с комплексными числами. Системы линейных уравнений с тремя неизвестными. Решение линейных неравенств, содержащих знак модуля. Показательная функция, ее свойства, график. Показательные уравнения и неравенства. Логарифмическая функция, ее свойства.
методичка, добавлен 02.04.2015Алгебраические дополнения для определителей. Обзор алгоритма нахождения исходной матрицы. Изучение метода обратной матрицы при решении системы уравнений. Расчет длины отрезков, отсекаемых плоскостью от осей координат с помощью уравнения плоскости.
контрольная работа, добавлен 04.09.2013Решение систем линейных алгебраических уравнений с положительно определенными симметричными (несимметричными) плохо обусловленными матрицами модифицированным методом регуляризации. Возможность существенного улучшения решения СЛАУ с матрицами Гильберта.
статья, добавлен 29.04.2019Решение однородных и неоднородных линейных систем. Существование фундаментальной матрицы и ее построение. Анализ методов вариации произвольных постоянных. Решение дифференциальных уравнений первого порядка. Элементы теории устойчивости, уравнение Пфаффа.
курс лекций, добавлен 11.10.2014Приближенные методы решения систем линейных уравнений. Эффективность применения приближенных методов. Метод итераций в системе с n линейных уравнений с n неизвестными. Решение СЛАУ высокого порядка методом Ланцоша. Проблема выбора начального приближения.
реферат, добавлен 16.03.2012Решение системы линейных уравнений методом Гаусса, нахождение предела и производной функции. Составление уравнения касательных, схематичное построение графиков. Вычисление расширенной матрицы, определение промежутков знаков постоянства и экстремумов.
контрольная работа, добавлен 21.10.2014Метод итерации - решение систем линейных алгебраических уравнений с вещественными коэффициентами относительно неизвестных, принимающих вещественные значения. Характеристика методов Якоби, Гаусса-Зейделя, П.Л. Чебышева. Применение итерационных методов.
курсовая работа, добавлен 11.06.2013Прогнозы протекания процессов в областях науки и техники. Разработка и использование методов прогноза и коррекции. Алгоритм решения систем линейных дифференциальных уравнений первого порядка пятиточечным методом прогноза и коррекции Адамса-Башфорта.
курсовая работа, добавлен 03.11.2010