Періодична задача Коші та двоточкова задача для еволюційних рівнянь нескінченного порядку
Розвиток теорії періодичної задачі Коші для еволюційних рівнянь з псевдодиференціальним оператором нескінченного порядку в класах початкових умов, які є узагальненими функціями з просторів. Локалізація для згорток періодичних функцій з простору.
Подобные документы
Опис підпростору розв’язків задачі Коші для неявного, виродженого рівняння вищого порядку, знаходження ознак коректності. Оцінка початкового моменту апроксимації розв’язків неявного рівняння вищого порядку лінійними комбінаціями елементарних розв’язків.
автореферат, добавлен 28.08.2014Методика дослідження властивостей фундаментальних розв'язків і фундаментальних матриць розв'язків для параболічних псевдодиференціальних рівнянь і систем. Теорія коректної розв'язності задачі Коші для таких рівнянь і систем у просторах Гельфанда й Шилова.
автореферат, добавлен 26.08.2015Побудова операторів збурень лінійних диференціальних рівнянь парного порядку крайових задач типу Діріхле, що залишають незмінним точковий спектр, повноту та мінімальність системи власних функцій. Дослідження умови єдиності розв’язків збурених задач.
автореферат, добавлен 28.09.2015Апріорні оцінки сильних розв’язків задачі Діріхле та мішаної задачі для лінійних еліптичних недивергентних рівнянь другого порядку загального вигляду в околі ребра області за мінімальних вимог на коефіцієнти. Теореми існування розв’язків задачі Діріхле.
автореферат, добавлен 25.06.2014Аналіз вимірності ядра задачі Діріхле в крузі для еліптичних рівнянь четвертого порядку з сталими комплексними коефіцієнтами у вироджених випадках. Неправильно еліптичні рівняння четвертого порядку, що мають корені відповідного характеристичного рівняння.
статья, добавлен 04.02.2017Встановлення умов існування та єдиності локального та глобального узагальнених розв'язків гіперболічних задач Стефана для систем рівнянь першого порядку з двома незалежними змінними. Удосконалення теорії диференціальних рівнянь з частинними похідними.
автореферат, добавлен 28.10.2015Розгляд фундаментального розв’язку задачі Коші. Параболічні системи типу Шилова із залежними від просторової змінної молодшими коефіцієнтами. Дослідження властивостей параболічних рівнянь із змінними коефіцієнтами обмеженої гладкості та невід’ємним родом.
статья, добавлен 25.08.2016Встановлення умов коректної локальної і глобальної розв'язності гіперболічної задачі Стефана для систем рівнянь першого порядку з двома незалежними змінними. Визначення умов її існування та єдиності для квазілінійної системи рівнянь у криволінійній смузі.
автореферат, добавлен 23.08.2014Дослідження особливостей розв’язання задачі Коші для параболічного рівняння з імпульсним впливом. Основні поняття p-адичного аналізу. Властивості розв’язку задачі Коші над полем. Формули диференціювання теплових потенціалів виразів, на основі лем.
статья, добавлен 25.03.2016Дослідження дискретно-неперервних крайових задач для векторних рівнянь Теорія граничної точки й граничного круга Вейля на випадок систем диференціальних рівнянь першого порядку та квазідиференціальних рівнянь довільного скінченного порядку з мірами.
автореферат, добавлен 13.07.2014Розкриття методу Фур’є для різних типів гіперболічних рівнянь: неоднорідних, вільних коливань струни. Загальна перша крайова задача. Крайові задачі зі стаціонарними неоднорідностями. Задачі без початкових умов. Загальна схема методу поділу змінних.
курсовая работа, добавлен 21.04.2012Системи рівнянь, основні граничні та початкові умови що описують малі потенціальні рухи рідини поблизу рівноважного стану в лінійному наближенні. Методи оптимально-диференціального формулювання еволюційної задачі. Узагальнений розв`язок задачі Коші.
статья, добавлен 30.10.2016Оцінка ефективності явних обчислювальних схем числового розв’язку задачі Коші для звичайного диференціального рівняння. Рекомендації щодо ефективного застосування методу диференціально-тейлорівських перетворень для числового інтегрування рівнянь.
статья, добавлен 29.07.2016Дослідження еволюції підходів до вирішення коректності математичних задач. Доведення теореми неперервний лінійний. Перевірка правильності рівнянь другого порядку з частинними похідними та виконання умов леми. Розгляд теорії функціональних рівнянь.
реферат, добавлен 17.06.2014Встановлення умов глобальної розв’язності та нерозв’язності задачі Коші для виродного параболічного рівняння з нелокальним джерелом. Аналіз визначення початкових функцій, що повільно спадають до нуля та містять нелокальний множник у від’ємному степені.
автореферат, добавлен 28.10.2015Встановлення точних за порядком двосторонніх оцінок розмірів носія розв’язку в задачі Коші для квазілінійних вироджених рівнянь з подвійною нелінійністю. Вплив неоднорідності середовища і неоднорідності абсорбції на явище миттєвого виникнення інтерфейсу.
автореферат, добавлен 18.07.2015Дослідження методу точного розв'язку задачі Карлемана у кільці для двох пар функцій в окремому випадку. Розгляд лінійних диференціальних, диференціально-різницевих та диференціальних рівнянь, які зводяться до задач Карлемана для смуги та кільця.
автореферат, добавлен 04.03.2014Доведення однозначної розв’язності задач про визначення пари функцій. Пошук похідної дробового порядку. Обернені крайові задачі для дифузійно-хвильового рівняння з узагальненими функціями в правих частинах. Векторна функція скалярного аргументу.
статья, добавлен 25.03.2016- 44. Розв’язність початкової задачі для позитивних систем лінійних функціонально-диференціальних рівнянь
Доведення теорем про пов’язані з лінійною задачею Коші функціонально-диференціальні нерівності. Отримання ряду умов, які гарантують однозначну розв’язність початкової задачі для систем лінійних функціонально-диференціальних рівнянь загального вигляду.
автореферат, добавлен 29.07.2014 - 45. Математичне моделювання систем та процесів з використанням неявних і вироджених еволюційних рівнянь
Вивчення та характеристика виділених класів неявних та вироджених еволюційних рівнянь, які виникають при математичному моделюванні систем. Розробка та обґрунтування основних чисельних методів побудови розв‘язків відповідних вироджених мішаних задач.
автореферат, добавлен 29.01.2016 Побудова операторів збурень лінійних диференціальних рівнянь парного порядку крайових задач типу Діріхле. Незмінність точкового спектру, повнота та мінімальність системи власних функцій. Дослідження властивостей розв’язків задач, отриманих у процесі.
автореферат, добавлен 26.02.2015Історичний обрис розвитку теорії диференціальних рівнянь. Лінійні однорідні та неоднорідні рівняння 2-го порядку з сталими коефіцієнтами. Основні види диференціальних рівнянь 1-го та 2-го порядку та методи їх розв’язування. Графічний метод інтегрування.
реферат, добавлен 29.11.2014Ознайомлення з алгебраїчними методами розв’язку нелінійних диференціальних рівнянь. Теоретично-групові та симетрійні властивості, що виникають при рішенні нелінійних еволюційних задач в прикладній математиці. Засоби інваріантно-групових розв’язків.
автореферат, добавлен 23.11.2013Характеристика особливостей методів інтегрування лінійних диференціальних рівнянь 1-го порядку. Проведення аналізу диференціальних рівнянь в R-L контурі. Вивчення способу варіації довільної константи. Розгляд прикладу використання методу Бернуллі.
контрольная работа, добавлен 16.02.2014Знайомство з властивостями розв’язків вироджених диференціальних рівнянь вищих порядків з обмеженнями на резольвенту поліноміального жмутка операторів. Аналіз підпростору розв’язків задачі Коші для виродженого диференціального рівняння вищого порядку.
автореферат, добавлен 28.12.2015