Элементы теории множеств и графов
Характеристика формальных описаний элементов и систем, которые опираются на язык теории множеств и графов. Особенности элементов множества - любых объективных и субъективных понятий, объединяемых в соответствии с некоторым законом, правилом, признаком.
Подобные документы
Характеристика и сущности теории функций действительного переменного. Знакомство с основными теоремами, их доказательство. Анализ теоремы о произведениях конечного числа счетных множеств. Особенности теоремы, отображающей образ счётного множества.
контрольная работа, добавлен 25.12.2011Определения и теоремы теории графов, подграфы. Операции над графами и степени их вершин. Цепи, циклы и компоненты. Применение теории графов в школьном курсе математики, в задачах управления дорожным движением, химии, биологии, физике. Графы и информация.
курсовая работа, добавлен 22.06.2014Простейшие задачи аналитической геометрии на плоскости и системы координат в геодезии и картографии. Применение матриц, элементов теории графов и систем линейных уравнений в географии. Исследования с помощью производных, дифференциалов и интегралов.
учебное пособие, добавлен 15.04.2014Обобщение одного из известных результатов С.С. Кислицына, связанного с нахождением числа нумераций конечных частично упорядоченных множеств. Понятия и обозначения теории бинарных отношений и теории групп. Существование отношений частичного порядка.
реферат, добавлен 22.05.2017Характеристика понятия и сущности, способов задания, основных операций, свойств характеристических функций множеств. Изучение декартового произведения множеств, сравнение их мощности, описание формул включений и исключений. Метод математической индукции.
лекция, добавлен 28.04.2015Понятие и сущность гладкой поверхности, порядок и принципы определения ее площади. Вычисление поверхностных интегралов первого и второго порядка. Скалярное поле как совокупность двух множеств: множества точек пространства и соответствующих чисел.
лекция, добавлен 18.10.2013Подсчет числа различных комбинаций как основная цель и задача комбинаторики. Классическая формула для нахождения вероятности. Перестановки элементов множества как упорядоченные элементы из всех элементов множества. Сочетание элементов вероятности.
презентация, добавлен 01.11.2013Решение проблемы о структуре окрестности притягивающих, слабо притягивающих и неасимптотически устойчивых инвариантных множеств. Классификация компактных и замкнутых инвариантных множеств. Метод знакопостоянных функций Ляпунова для динамических систем.
автореферат, добавлен 19.08.2018Определение графов, их свойства и типы. Использование диаграмм для представления графов. Элементарные свойства остовных деревьев в связных графах. Топологическая теория графов. Введение в теорию матроидов, доказательство теорем о связности и укладках.
учебное пособие, добавлен 15.10.2016Язык бинарных и n-арных отношений. Декартово произведение множеств. Формы представления бинарных отношений. Использование ориентированных графов. Булевое произведение матриц. Подобия на множестве фигур плоскости. Изучение классов эквивалентности.
лекция, добавлен 19.06.2014Различные формы задания булевых функций. Переход от одной формы задания к другой. Построение и упрощение формул, задаваемых различными схемами. Нахождение кратчайших маршрутов для взвешенных графов с помощью алгоритма Форда–Беллмана и алгоритма Дейкстры.
курсовая работа, добавлен 18.10.2017Понятие множества, операции и математические понятия в теории множеств. Суть и способы математического доказательства. Отношения эквивалентности и порядка на множестве. Теоретико-множественный подход в построении множества целых неотрицательных чисел.
курс лекций, добавлен 06.08.2017Составные части графа. Использование теории графов при решении задач в экономике. Алгоритмы, предназначенные для выполнения задачи оптимизации. Понятие "жадный алгоритм", его свойства. Применение формул метода Дейкстры для решения экономических задач.
статья, добавлен 20.04.2019Проектирование информационных систем на основе графовых моделей. Анализ связей между элементами и множествами модели ИС в аспекте применения инвариантов теории графов. Использование соответствия Галуа при анализе системных связей информационных моделей.
статья, добавлен 24.07.2018Изучение ориентированного конечного графа. Характеристика инцидентности ребра и вершины. Основы построения матриц смежности и инцидентности. Рассмотрение примеров объединения графов. Анализ условий и компонентов связности. Изучение эйлеровых цепей.
презентация, добавлен 31.10.2013- 91. Теория графов
Первая работа по теории графов всемирно известного математика и механика Леонардо Эйлера. Построения электрических цепей и подсчёта химических веществ с различными типами молекулярных соединений. Становление кибернетики и развитие вычислительной техники.
реферат, добавлен 17.06.2014 - 92. Алгебра множеств
Понятие и направления исследования множеств, их классификация и разновидности, свойства и отличия. Мощность множества и основные критерии ее оценки. Метрические пространства: внутренность, внешность и граница. Непрерывные отображения. Аксиомы счетности.
курс лекций, добавлен 28.03.2012 - 93. Теория графов
Основные понятия теории графов. Представления о планарном графе. Теорема Куратовского и другие характеризации планарности. Эйлеровы и гамильтоновы графы. Расчет количества израсходованного топлива за неделю каждым водителем по справочным данным задачи.
курсовая работа, добавлен 30.11.2013 Алгоритмы динамического программирования в теории графов. Основы теории графов. Сравнение алгоритмов Дейкстры и Беллмана-Форда. Реализация алгоритма Беллмана-Форда в задаче поиска наикратчайшего пути в графе. Иллюстрация алгоритма на примере графа.
курсовая работа, добавлен 04.12.2023- 95. Теория графов
История возникновения, сущность, основные понятия, виды, способы задания и характеристики вершин теории графов. Доказательство теоремы Эйлера об эйлеровых графах (критерия эйлеровости графа). Алгоритм решения задач изоморфизма. Понятие дерева и леса.
лекция, добавлен 11.02.2010 Основные понятия и обозначения, связанные с множествами и операциями над ними. Формула мощности объединения нескольких множеств. Теорема Кантора-Бернштейна и ее доказательства равномощности. Бинарное отношение эквивалентности и порядка. Теорема Цермело.
курс лекций, добавлен 28.12.2013Определение основных понятий числовых множеств. Граничная точка и граница множества, соединения и бином Ньютона, а также треугольник Паскаля. Характеристика комплексных чисел и операции над ними. Формула Муавра и извлечение корня из комплексного числа.
реферат, добавлен 17.01.2011Основные способы задания множеств. Анализ рефлексивных, симметричных и транзитивных бинарных отношений. Характеристика исследования ориентированных графов. Главные законы, определяющие свойства логических операций. Изучение элементарных булевых функций.
презентация, добавлен 06.09.2017- 99. Теория графов
Исследование математической теории о совокупности непустого множества вершин и ребер. Анализ кратности неориентированных и ориентированных дуг. Характеристика понятия эквивалентности при множестве вершин. Обоснование гомеоморфного подразбиения дуги.
лекция, добавлен 18.10.2013 - 100. Теория множеств
Операции над множествами. Декартово произведение множеств. Бинарные отношения, функции и порядок. Область значений бинарного отношения. Класс эквивалентности элемента. Сочетания, размещения и перестановки элементов. Бином Ньютона, теория алгоритмов.
реферат, добавлен 19.01.2012