Определение вычетов и функций

Изолированные особые точки аналитической функции. Определение вычетов. Нули аналитической функции. Понятие изолированных особых точек, их определение. Теорема о связи нулей и полюсов. Вычет аналитической функции в особой точке. Основная теорема о вычетах.

Подобные документы

  • Понятие и порядок определения точки сгущения множества. Исследование непрерывных функций. Частная производная функции. Дифференцируема в точке функция и основные требования к ней. Определение касательного вектора и плоскости к поверхности. Матрица Якоби.

    шпаргалка, добавлен 11.04.2012

  • Понятие неособой точки и способы задания поверхности (параметрический, явный или неявный). Система координатных параметрических уравнений и теорема об обратной функции. Геометрическое определение градиента, формулы Ньютона - Лейбница и Стокса.

    контрольная работа, добавлен 25.03.2011

  • Локальный экстремум функции. Отыскание наибольшего и наименьшего значения непрерывной функции на отрезке. Расчет интервалов выпуклости графика кривой и точек перегиба функции. Определение интервалов возрастания и убывания функций с помощью производных.

    лекция, добавлен 07.07.2015

  • Арифметические операции над функциями, имеющими предел. Доказательство непрерывности функции в точке. Переход к пределу в неравенствах. Свойства непрерывной математической функции. Изучение классификации точек разрыва в арифметических неравенствах.

    презентация, добавлен 16.10.2014

  • Определение экстремумов, точек перегиба и асимптот функции, использование команды polyroots. Исследование функции одной, двух переменных. Вычисление неопределенного постоянного множителя, Координаты стационарных точек. Применение функции CreateMesh.

    контрольная работа, добавлен 10.04.2020

  • Доказано, что предел максимального среднего равен сумме пространственного среднего функции и добавки; добавка зависит от отношения максимальной нормы скорости к минимальной. Локально интегрируемые по Лебегу функции. Теорема о усреднении движений на торе.

    статья, добавлен 31.05.2013

  • Исследование интерполирования функции полиномами, непосредственно непрерывных функций на отрезке и в точке. Определение понятия погрешности интерполяции. Полиноминальная интерполяция. Интерполяционный полином Лагранжа. Представление гладкой функции.

    курсовая работа, добавлен 22.04.2011

  • Теорема Вейерштрасса, исследование свойств функции, непрерывной на заданном отрезке. Схема и основные этапы нахождения наибольшего и наименьшего значения функции на отрезке. Расчет критических точек, в которых производная равна нулю или не существует.

    презентация, добавлен 21.09.2013

  • Определение предела последовательности, теорема о единственности предела. Классификация пределов, теорема о предельном переходе в неравенствах и теорема о двух милиционерах. Примеры интегрирования по частям, решение простых и неопределенных интегралов.

    контрольная работа, добавлен 19.05.2014

  • Характеристика особенностей первого и второго замечательного пределов. Сравнение бесконечно малых функций. Рассмотрение значения и места непрерывных функций. Определение непрерывности функции в точке. Исследование точки разрыва и их классификации.

    реферат, добавлен 18.12.2017

  • Сиплициальные гомологии: определение и свойства. Комологии и формулы универсальных коэффициентов. Эйлерова характеристика и теорема Лефшеца. Гомоморфизм Бокштейна и изоморфизм Пуанкаре. Теорема о вырезании и точная последовательность Майера-Вьеториса.

    учебное пособие, добавлен 17.12.2013

  • Решение тригонометрического неравенства с помощью составленного алгоритмического предписания. Определение нулей и точек разрыва функции в левой части неравенства. Расстановка на единичной окружности точек, являющихся представителями всех найденных чисел.

    презентация, добавлен 15.05.2016

  • Определение функций частное Ферма и их свойства. Примеры возможного использования функций Ф(а) для вычисления индексов элементов в группе Z(m). Методы получения и прикладное значение логарифмирования в мультипликативной группе кольца вычетов по модулю.

    статья, добавлен 15.09.2012

  • Характеристика особенностей теоремы Муавра-Лапласа - одной из предельных теорем теории вероятностей. Сущность первообразной функции Гаусса. Формула Ньютона-Лейбница. Стандартный интеграл Лапласа. Теорема сложения вероятности для несовместных событий.

    реферат, добавлен 02.01.2013

  • Теорема о непрерывности производных недифференцируемых функций. Определение координат в окрестности точки. Частные приращения по переменной и образованной от существующих пределов. Понятие дифференцируемости и производной сложной формулы двух аргументов.

    лекция, добавлен 26.01.2014

  • Критерии определения независимости и ортогональности собственных векторов. Свойства расстояния. Простейшие операции над множествами. Последовательности и функции в пространстве Rn. Теорема Гейне. Непрерывность на множестве. Понятие частных производных.

    курсовая работа, добавлен 17.01.2011

  • Ознакомление с методами обозначения частной производной функции. Определение условий дифференцирования функции. Рассмотрение символики для обозначения частных производных. Исследование теоремы о частных производных. Анализ сущности смешанных производных.

    лекция, добавлен 13.04.2015

  • Теоремы о дифференцировании сложной функции двух переменных. Необходимое и достаточное условия экстремума функции нескольких переменных. Интегрирование тригонометрических, рациональных функций, некоторых видов иррациональностей. Задача и теорема Коши.

    шпаргалка, добавлен 25.01.2016

  • Определение понятия прогнозирования. Характеристика видов и методов прогнозирования. Анализ основных элементов временных рядов. Моделирование тенденции временного ряда путем построения аналитической функции. Пример решения задачи трендовым методом.

    курсовая работа, добавлен 11.04.2017

  • Сущность числовой последовательности, анализ свойств и функций. Геометрическая интерпретация предела последовательности. Теорема сравнения. Основные характеристики функции. Базовые теоремы о пределах. Раскрытие неопределенностей. Замечательные пределы.

    курс лекций, добавлен 23.11.2011

  • Особенности нахождения наибольшего и наименьшего значения функции нескольких переменных. Понятие и сущность точек экстремума и границы множества. Математическое определение частных производных функции, характеристика ее значения в критических точках.

    презентация, добавлен 17.09.2013

  • Дифференцируемые функции своих аргументов. Вычисление производной сложной функции. Свойство инвариантности формы первого дифференциала. Теорема производной обратной функции, ее геометрический смысл. Производная степенно показательной функции, ее алгоритм.

    лекция, добавлен 26.01.2014

  • Предел функции в точке, ее непрерывность. Бесконечно большие и малые функции. Классификация точек разрыва. Первый и второй замечательные пределы. Сравнение бесконечно малых функций. Асимптоматические формулы, правило Лопиталя. Разложение в ряд Тейлора.

    учебное пособие, добавлен 12.02.2013

  • Сущность основного условия для достижения функцией локального максимума в точке. Исследование достаточных критериев локального экстремума. Применение формулы Тейлора для доказательства теоремы о существовании минимума функции в стационарной точке.

    доклад, добавлен 20.05.2014

  • Измерение площадей многоугольников. Равенство многоугольников с равными площадями. Теорема о точке пересечения медиан. Свойство средней линии треугольника. Теорема о площади многоугольника, все стороны которого находятся в точках целочисленной решетки.

    курсовая работа, добавлен 16.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.