Моделирование 3-ткани для минимальных поверхностей
Поверхности, у которых средняя кривизна во всех точках равна нулю. Катеноид – единственная вещественная; среди поверхностей вращения – "поверхность Шерка", имеющая уравнение. Коэффициенты первой квадратичной формы. Уравнение кривой Вивиани и его вид.
Подобные документы
Построение линии пересечения двух поверхностей в частном и в общем случаях. Характеристика особого случая построения линии пересечения двух поверхностей. Особенности процесса построения линии пересечения поверхностей способом секущих плоскостей.
лекция, добавлен 02.04.2019Математическое моделирование распространения света. Унитарное преобразование Гамильтониана. Дифференцирование по параметру деформации. Уравнение нулевой кривизны. Интегрирование с помощью эпсилон-динамики. Первые члены асимптотических разложений.
дипломная работа, добавлен 15.12.2015Свойства интеграла ФКП. Вычисление криволинейного интеграла от функции действительного переменного. Выделение в подынтегральной функции действительных и мнимых частей. Уравнение отрезка в параметрическом виде. Граничные точки кривой на плоскости.
презентация, добавлен 17.09.2013Способы получения уравнения касательной. Определение нормали и инвариантов плоской кривой. Построение соприкасающихся и спрямляющихся плоскостей. Выражение кривизны и кручения через произвольный радиус-вектор. Параметрические уравнения поверхности.
лекция, добавлен 01.09.2017Уравнение Пелля как одно из наиболее изученных диофантовых уравнений. Использование алгебраических чисел и диофантовых приближений для решения уравнений. Нелинейные рекуррентные формулы для решений уравнения Пелля. Рекуррентная цепочка равенств.
реферат, добавлен 22.11.2018Векторное уравнение прямой линии и плоскости. Формулы и правила для вычисления частных производных для вектор-функций. Необходимое и достаточное условие непрерывности вектор-функции. Понятие определенного интеграла, параметрические уравнения кривой.
лекция, добавлен 01.09.2017Общее уравнение и уравнение прямой, проходящей через две точки. Вычисление угла между прямыми. Условия параллельности и перпендикулярности прямых. Дифференционная функция с одной переменной. Понятие о вариационных рядах. Гипербола, парабола, их уравнение.
контрольная работа, добавлен 23.12.2010Матрица квадратичной формы. Преобразование квадратичной формы при линейном однородном преобразовании переменных. Приведение действительной квадратичной формы к нормальному виду. Закон инерции квадратичных форм. Знакоопределенные квадратичные формы.
курсовая работа, добавлен 16.11.2012Предмет начертательной геометрии и способы проецирования. Точка и прямая на комплексном чертеже. Поверхности и точки на ней, сечение поверхностей плоскостями. Теоретические основы решения метрических задач. Аксонометрические оси и показатели искажения.
курс лекций, добавлен 18.04.2013Рассмотрение K3 поверхностей, являющихся полным пересечением. Доказательства образования дивизоров в пространстве всех квартик, содержащих коники. Нахождение степени дивизоров. Нахождение числа прямых в пучках K3 поверхностей второго и третьего типа.
курсовая работа, добавлен 30.08.2016Характеристика процедуры создания моделей инженерных шероховатых поверхностей на основе фрактального представления без потери точности оценок параметров контактного взаимодействия. Описание данных моделей и профилей уравнением Вейерштрасса-Мандельброта.
статья, добавлен 27.05.2018- 62. Тела вращения
Виды тел вращения. Определение цилиндра, конуса, шара. Нахождение объемов и площадей поверхностей тел вращения: фигуры, формулы расчета и правила. Доказательство теоремы об объёме шара с определенным радиусом. Понятие шарового сегмента и шарового сектора.
презентация, добавлен 12.05.2011 Построение фрактальной модели поверхности, позволяющей с определенной достоверностью описывать сложные объекты, в достаточной мере учесть структуру шероховатого поверхностного слоя, а также использовать ее при решении задач контактного взаимодействия.
статья, добавлен 27.05.2018Алгоритм построения пересечения двух поверхностей. Рассмотрение построения линии пересечения трехгранных призмы и пирамиды. Способы построения линии пересечения криволинейной поверхности с плоскостями (гранями многогранника) и с прямыми (его ребрами).
лекция, добавлен 24.07.2014Лист Мёбиуса как геометрический курьёз: поверхность, имеющая всего лишь одну сторону и только один край. Как просто можно сделать лист Мёбиуса в домашних условиях. Поиск и решение уравнения листа Мёбиуса с помощью методов дифференциальной геометрии.
статья, добавлен 04.05.2012Суть строчной, столбцовой, диагональной, единичной и транспонированной матрицы. Особенность определителей и их свойств. Собственные значения и векторы многомерной таблицы. Анализ квадратичной формы переменных. Исследование систем линейных уравнений.
лекция, добавлен 05.06.2016Обыкновенное дифференциальное уравнение первого порядка, его решение. Геометрическое истолкование дифференциального уравнения. Теорема существования и единственности. Характер поведения интегральных линий системы уравнений в окрестности особой точки.
курс лекций, добавлен 28.10.2012Амплитудно-частотная характеристика. Дифференциальное уравнение как уравнение, связывающее значение производной функции с самой функцией, значениями независимой переменной. Передаточные функции сложных систем. Реакция системы на входное воздействие.
практическая работа, добавлен 11.03.2016Правила начертания и основные назначения линий на чертежах всех отраслей промышленности. Способы преобразования проекций. Расчет расстояния от точки до плоскости. Построение линии пересечения плоскостей. Взаимное пересечение поверхностей вращения.
методичка, добавлен 23.09.2011- 70. Линеаризация
Нелинейное дифференциальное уравнение. Линеаризованное уравнение динамики. Передаточная функция линеаризованного звена. Переходный процесс на выходе линеаризованного звена при ступенчатом входном сигнале. Коэффициент усиления в установившемся режиме.
контрольная работа, добавлен 07.08.2013 Определение понятия эллипс, его уравнение и свойства эллипса. Эллипс как центральная невырожденная кривая второго порядка и его каноническое уравнение. Формулы для определения длины дуги эллипса, а также формулы для периметра, и построение эллипса.
курсовая работа, добавлен 10.02.2014Cистематизация и обобщение видов уравнений с параметрами и методы их решения. Случаи, когда исходное уравнение не является квадратным. Значения параметра a, для которых все корни уравнения отрицательны. Свойства логарифмов и методы замены переменной.
курсовая работа, добавлен 30.03.2015Выполнение геометрических построений на плоскости и в пространстве, сопутствующих расчетов при помощи компьютерной программы geogebra. Примеры приведения к каноническому виду алгебраических уравнений второго порядка, определяющих линию или поверхность.
статья, добавлен 20.04.2018Определение степени уравнения в зависимости от вида 3-ткани. Описание некоторых видов определителей плоской прямолинейной 3-ткани. Построение трехдиагональной гиперболической гиперболы канонического уравнения. Образование плоской прямолинейной 3-ткани.
статья, добавлен 29.07.2017Доказательства классических теорем о неподвижных точках (в том числе и в бесконечномерном случае), их применения в теории дифференциальных уравнений. Сущность теоремы Банаха о сжатии полных метрических пространств, вычисление теоремы Брауэра для круга.
дипломная работа, добавлен 22.04.2011