Распознавание образов с помощью нейронных сетей
Практические приложения распознавания образов. Выработка правил классификации самолетов для бомбардировщиков и истребителей в зависимости от их максимальной скорости и максимального взлетного веса. Обучение по алгоритму обратного распространения ошибки.
Подобные документы
Понятие и классификация нейронных сетей; их структура и принцип работы. Особенности применения нейронных сетей в телекоммуникационных системах. Методы решения задач маршрутизации. Принципы прогнозирования потоков данных на основе нечетно-нейронных сетей.
дипломная работа, добавлен 26.05.2018Оптимизация принятия решений в интеллектуальных системах, ориентированных на применение в проблемных и междисциплинарных областях. Рассмотрение интеллектуальных систем, основанных на тестовых методах распознавания образов, последовательность этапов.
статья, добавлен 19.01.2018Разработка искусственных нейронных сетей и машинное обучение как перспективные направления информационных технологий. Преимущества и недостатки, способность нейросетей решать задачи, которые невозможно решить классическими программными алгоритмами.
статья, добавлен 20.02.2019Исследование методов, алгоритмов и программ распознавания текста документов, обеспечивающих высокое качество распознавания. Оптическое распознавание символов, история создания системы. Текущее состояние технологии оптического распознавания текста.
курсовая работа, добавлен 25.06.2011Анализ сущности нейронных сетей, их особенности способности к обучению (настройки архитектуры и синаптических связей). Перспективы развития применения и использования искусственных нейронных сетей. Основные достоинства нейронных сетей перед традиционными.
статья, добавлен 29.07.2018Определение алгоритмов (оптимизационных методов) обучения искусственных нейронных сетей. Характеристика их видов: метод случайного поиска и стохастического градиентного спуска. Оценка программной реализации адаптивного метода обучения нейронной сети.
статья, добавлен 29.05.2017Рассмотрение средств и методов MatLab и пакета Simulink для моделирования и исследования нейронных сетей. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме. Применение GUI-интерфейса пакета нейронных сетей.
методичка, добавлен 03.07.2017Осцилляторные нейросетевые модели сегментации изображений и зрительного внимания. Типы нейронных сетей. Быстрые нейронные сети: проектирование, настройка, приложения. Нейроноподобные модели описания динамических процессов преобразования информации.
курс лекций, добавлен 08.02.2013Исследование решения задачи автоматического распознавания коридоров набивных стеллажей вилочными погрузчиками с использованием нейронной сети. Описания принципа работы и структуры нейронной сети. Проверка работоспособности построенной нейронной сети.
статья, добавлен 25.02.2019Проблема распознавания кривых линий на сложном фоне шумовых точек и близких соседних кривых. Главные требования к обработке в современных экспериментах. Понятие и особенности эластичных нейронных сетей. Робастные методы оценки параметров и их применение.
статья, добавлен 08.02.2013Обобщение основных подходов к распознаванию текста. Принципы функционирования программного обеспечения OCR – оптического распознавания символов. Контекстное распознавание текста. Нейронные сети. Примеры программ для различных видов распознавания текста.
реферат, добавлен 06.06.2013- 112. Аспекты применения сверточных нейронных сетей при обнаружении скрытой информации в изображениях
Решение стегоанализа с применением искусственных нейронных сетей. Описание методики стеганографического анализа изображений, которая состоит в синтезе сигнатурного и статистического алгоритмов. Методика распознавания скрытой информации в изображениях.
статья, добавлен 16.05.2022 Классификация искусственных нейронных сетей по различным признакам. Структура простейшей и гексагональной однослойной регулярной сети. Определение направлений связи между нейронами. Предобработка данных, основные технологии. Оптимизация нейронных сетей.
лекция, добавлен 26.09.2017Изучение естественных способностей к распознаванию у человека или других организмов и разработка математических моделей распознавания и технических устройств на их основе как основные направления обработки образов. Сущность и роль данных подходов.
статья, добавлен 15.07.2018Задача анализа данных и распознавания образов. Функция конкурентного сходства (FRiS). Модификация с использованием локального спуска. Коммерческое использование алгоритмов. Идентификации классов объектов по характерным для них свойствам или признакам.
курсовая работа, добавлен 27.11.2013- 116. Нейронные сети
Понятие нейронных сетей, которые вошли в практику везде, где нужно решать задачи прогнозирования, классификации или автоматизации. Применение и возможности нейронных сетей. Аппроксимация функций по набору точек. Сжатие информации. Ассоциативная память.
реферат, добавлен 09.06.2016 Анализ библиотек оптического распознавания символов. Описание пользовательского сценария мобильного приложения. Модули сканирования и распознавания визитных карточек, отображения сохранённых контактов, настроек приложения. Дизайн интерфейса программы.
дипломная работа, добавлен 04.12.2019Метод распознавания образов на изображении, основанный на определении центра масс исходного образа в совокупности с анализом отдельных признаков, свойственных геометрическим фигурам. Способ анализа для распознания фигур, имеющих несколько осей симметрии.
статья, добавлен 31.07.2018Рассмотрение развития, структуры, видов и применения нейросетей. Процесс обучения и передачи информации в нейросетях. Основные принципы работы итоговых нейросетей. Применение нейросетей для распознавания образов, обработки естественного языка, медицине.
статья, добавлен 26.02.2025Эффективность последовательной процедуры распознавания гипотез. Определение геометрических признаков лица, являющихся наиболее подходящими для распознавания. Особенности использования нейросетевого распознавания для определения человека по изображению.
статья, добавлен 29.04.2017Сеть Хопфилда: понятие, слои, граница емкости памяти, структурная схема. Пороговая передаточная функция. Обучение сети Хемминга, алгоритм функционирования. Весовые коэффициенты тормозящих синапсов. Определение состояния нейронов второго слоя сети.
статья, добавлен 17.07.2013Применение искусственных нейронных сетей. Выработка алгоритма синтеза контроллера, формирующего порог, который обеспечит заданные выходные реакции объекта управления (устройства), с использованием математического аппарата искусственных нейронных сетей.
статья, добавлен 02.04.2019Представление рельефа на топографических картах. Системы распознавания образов. Описание алгоритмов и блок-схем работы компьютерной программы и функций, используемых в ней. Обработка изображения в MatLab. Распознавание цифр на топографической карте.
дипломная работа, добавлен 29.09.2017Анализ проблем взаимодействия систем распознавания речи с системами визуализации данных. Обзор методов построения приложения для визуализации речи для CAVE-систем. Моделирование программного приложения, описание взаимодействия модулей приложения.
дипломная работа, добавлен 01.09.2017- 125. Нейронные сети
История появления и развития нейронных сетей. Проведение их аналогии с мозгом человека. Сущность искусственной нейронной сети, ее программное или аппаратное воплощение. Особенности обучения нейронных сетей, их применение в современных развитых странах.
реферат, добавлен 05.04.2017