Применение метода Фурье к исследованию задачи Дирихле для уравнения с отклоняющимся аргументом и оператором Лапласа в главной части
Исследование первой краевой задачи для уравнения в частных производных второго порядка с отклоняющимся аргументом. Доказательство существования и единственности задачи. Применение метода Фурье для доказательства теоремы. Значение задачи Штурма-Лиувилля.
Подобные документы
Постановка задачи и основные этапы отыскания решения. Погрешности и критерии окончания метода деления отрезка пополам при решении нелинейного уравнения. Применение метода Ньютона, простых итераций, секущих и ложного положения при вычислительном процессе.
контрольная работа, добавлен 28.03.2015Основные правила обозначения пространства непрерывных функций. Характеристика классического решения краевой задачи. Описание основных теорем, их положения и обоснование. Процесс расширения понятия решения краевой задачи по двум направлениям, их отличия.
презентация, добавлен 30.10.2013История возникновения понятия функции, его исследования ученым Лейбницем. Сущность задачи о колебании струны, ее проблематика решения. Характеристика и основные возможности открытия Фурье. Сущность функционала и оператора, их главные задачи и принципы.
доклад, добавлен 29.10.2013Описание метода конечных разностей на примере определения зависимости температуры от времени в различных точках стержня из теплопроводящего материала. Решение смешанной задачи для уравнения теплопроводности с заданными начальным и граничными условиями.
лабораторная работа, добавлен 27.04.2011Получение условий разрешимости краевой задачи для функционально-дифференциального уравнения третьего порядка в случае резонанса. Ядро и образ оператора. Относительный коэффициент сюръективности оператора. Пространство абсолютно непрерывных функций.
статья, добавлен 26.04.2019Особенности применения метода дополнительного аргумента к решению характеристической системы. Оценка доказательства эквивалентности систем. Изучение доказательства существования решения задачи Коши. Дискретизация исходной задачи и её решение итерациями.
дипломная работа, добавлен 21.10.2017- 82. Теорема Виета
Доказательство теоремы Виета, в том числе ее применение для приведенного и неприведенного квадратного уравнения. Практические задачи и ситуации, в которых может использоваться теорема, а также краткая биография французского математика Франсуа Виета.
презентация, добавлен 18.04.2011 Поиск функции в заданной области, удовлетворяющей определенным условиям - аналогам условия Франкля и Бицадзе-Самарского. Единственность решения задачи. Решение сингулярного интегрального уравнения Трикоми. Применение метода регуляризации Карлемана-Векуа.
реферат, добавлен 15.06.2015Разложение тригонометрической функции в ряд Фурье с заданным интервалом. Создание линейных и квадратичных моделей. Составление кода программы и блок-схемы данной задачи. Определение шага интегрирования и точности вычислений. Тестирование программы.
лабораторная работа, добавлен 20.06.2022Существование и единственность решения задачи для псевдопараболического и гиперболического уравнений четвертого порядка, когда условия склеивания задается на не характеристической линии. Сведение решаемой задачи к решению системы интегральных уравнений.
статья, добавлен 18.05.2016Изучается краевая задача с нелокальным граничным условием для уравнения смешанного типа с неизвестной правой частью в прямоугольной области. Установлен критерий единственности решения поставленной обратной задачи в виде сумм биортогональных рядов.
статья, добавлен 31.05.2013Основные понятия интегральных уравнений. Понятие интегральных преобразований и их таблица, преобразование Фурье, Лапласа и Меллина и их применение к решению интегральных уравнений. Преобразование Фурье и её применение к решению некоторых интегральных урав
дипломная работа, добавлен 29.04.2024Исследование этапов решения начальной задачи для дифференциального уравнения второго порядка со случайными коэффициентами. Расчет формулы для нахождения его математического ожидания в случае равномерного закона распределения случайного коэффициента.
статья, добавлен 21.06.2018Решение линейного уравнения Фоккера-Планка, его применение и особенности. Постановка вариационной задачи максимизации информационной энтропии по Клоду Шеннону. Анализ параметров решения уравнения методом моментов, сущность вариационного исчисления.
дипломная работа, добавлен 14.07.2016Особенность использования свойств гипергеометрической функции Гауса и классических методов интегральных уравнений. Характеристика получения двухточечной краевой задачи для обыкновенного нагруженного интегро-дифференциального математического равенства.
статья, добавлен 20.05.2017- 91. Об одной нелокальной задаче для гиперболического уравнения с интегральными условиями первого рода
Анализ нелокальной задачи для гиперболического уравнения с интегральными условиями первого рода. Метод, позволяющий свести поставленную задачу к задаче с интегральным условием второго рода. Доказательство существования единственного обобщенного решения.
статья, добавлен 31.05.2013 Рассмотрение начальной задачи для систем уравнений и использование развитой методики дополнительного аргумента для решения задачи. Применение развитой методики для доказательства существования решения новых видов векторно-матричных нелинейных уравнений.
статья, добавлен 07.08.2020Рассмотрение видов линий второго порядка на плоскости. Характеристика общего уравнения касательных к линиям второго порядка. Составление уравнения касательной к эллипсу, гиперболе и параболе. Разработка программы для написания уравнения касательной.
курсовая работа, добавлен 29.10.2016Решение задачи на нахождение предела с применением правила Лопиталя. Составление уравнения касательной к графику функции. Исследование функции и построение ее графика. Пример вычисления определенного интеграла, а также решения дифференциальных уравнений.
контрольная работа, добавлен 01.03.2017Определение функции нескольких переменных. Дифференциальные уравнения первого и высших порядков. Основные теоремы операционного исчисления (преобразования Лапласа). Числовые и знакоположительные ряды. Разложение в ряд Фурье четных и нечетных функций.
курс лекций, добавлен 18.02.2012Задача оптимальной фильтрации для сингулярно возмущенного уравнения Ланжевена. Выделение случаев, имеющих особенности при редукции задачи оценивания. Использование методов теории интегральных многообразий для понижения размерности данной задачи.
статья, добавлен 31.05.2013Решение задачи динамики, состоящей в восстановлении неизвестных граничных управлений, порождающих наблюдаемое движение динамической системы. Описание динамической системы как краевой задачи для уравнения с частными производными гиперболического типа.
статья, добавлен 15.01.2019Дискретное преобразование Фурье. Уменьшение вычислительных затрат при использовании быстрого преобразование Фурье с прореживанием по времени и по частоте. Процедура объединения, граф "Бабочка", алгоритм с замещением. Применение алгоритмов в радиофизике.
курсовая работа, добавлен 30.03.2015Методика применения метода конечных элементов к решению уравнения теплопроводности. Простая процедура учета граничных условий задачи. Сравнение затрат машинного времени и погрешности расчетов при использовании различных видов элементов и функций формы.
статья, добавлен 30.10.2016Решение краевых задач уравнений математической физики и задачи о разыскивании собственных значений и собственных функций для обыкновенных дифференциальных уравнений. Задача Штурма-Лиувилля о нахождении отличных от нуля решений дифференциальных уравнений.
курсовая работа, добавлен 26.02.2020