Множественная регрессия
Изучение зависимости результативной переменной от нескольких факторных. Рассмотрение модели с двумя факторными переменными. Оценка вектора параметров. Характеристика случаев применения теоремы Гаусса-Маркова. Обзор метода решения матричного уравнения.
Подобные документы
Динамический ряд. Понятие о рядах динамики и их виды, методы выявления основных тенденций в рядах динамики: метод укрупнения интервалов, метод скользящей средней и аналитическое выравнивание. Понятие множественной регрессии и процесс построения её модели.
научная работа, добавлен 12.04.2010Множественные регрессионные модели. Использование множественной регрессии в решении проблем спроса, изучении доходности акций, изучении функции издержек производства, в макроэкономических расчетах. Выбор вида уравнения регрессии как спецификация модели.
презентация, добавлен 12.07.2015Нахождение метода наименьших квадратов уравнения линейной регрессии, где признак: среднесписочное число работников магазина и сумма розничного товарооборота. Определение параметров зависимости. Применение коэффициента корреляции, его вычисление.
контрольная работа, добавлен 24.11.2014Оценка корреляционной матрицы факторных признаков. Построение уравнений парной и множественной регрессии. Определение доверительного интервала прогнозов. Оценка значимости регрессивного уравнения и числа детерминации, взаимосвязь по временным рядам.
методичка, добавлен 28.12.2013Изучение зависимости выработки продукции на одного работника от ввода в действие новых основных фондов и от удельного веса рабочих высокой квалификации в общей численности робочих. Построение линейной модели множественной регрессии и запись ее уравнения.
методичка, добавлен 17.04.2014Оценка линейного коэффициента множественной корреляции, коэффициента детерминации, средних коэффициентов эластичности, бетта–, дельта–коэффициентов двухфакторной регрессионной модели. Коэффициент детерминации модели, прогноз результирующего показателя.
контрольная работа, добавлен 16.04.2012Основные задачи и предпосылки применения корреляционно-регрессионного анализа. Методы определения направления связи, ее характера. Парная регрессия на основе метода наименьших квадратов и метода группировок. Принятие решений на основе уравнения регрессии.
контрольная работа, добавлен 16.04.2016Оценка связи порядковых переменных с помощью непараметрических ранговых коэффициентов Спирмена и Кендалла. Модели метода наименьших квадратов с детерминированной независимой переменной. Оценка дисперсии независимой переменной. Сложение временных рядов.
статья, добавлен 28.07.2020Комплексное изучение основных возможностей пакета STATISTICA при осуществлении множественного регрессионного анализа. Нахождение уравнения множественной регрессии. Определение параметров модели. Проверка выполнения предпосылок метода наименьших квадратов.
лабораторная работа, добавлен 06.02.2015- 35. Парная регрессия
Построение поля корреляции. Выборочные среднеквадратические отклонения. Оценка качества полученной модели. Нахождение среднего коэффициента эластичности. Оценка статистической значимости параметров линейной регрессии. Интервальная оценка коэффициентов.
контрольная работа, добавлен 24.01.2014 Кредит как объект экономического исследования. Построение и анализ множественной эконометрической модели. Оценка параметров множественной линейной эконометрической модели с использованием парных коэффициентов корреляции. Анализ модели и оценка параметров.
курсовая работа, добавлен 16.05.2011Статистические и математические функции Excel: модели линейной регрессии с двумя коэффициентами, полиномиальная регрессия. Построение экспоненциальной линии тренда путем расчета точек методом наименьших квадратов. Дисконтированный период окупаемости.
контрольная работа, добавлен 10.11.2012Параметры уравнения регрессии и корреляционного значения. Анализ точности определения оценок коэффициентов регрессии. Расчет показателя тесноты связи и значимости коэффициента корреляции. Нахождение уравнения линейной регрессии из системы уравнений.
контрольная работа, добавлен 15.05.2017Определение параметров уравнения линейной регрессии. Экономическая интерпретация коэффициента регрессии. Расчет остаточной суммы квадратов. Оценка дисперсии остатков. Вычисление коэффициента детерминации, проверка значимости уравнения регрессии.
задача, добавлен 11.06.2013Построение уравнения парной регрессии. Расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Оценка статической значимости параметров регрессии и корреляции. Прогноз зарплаты в зависимости от значения прожиточного минимума.
задача, добавлен 27.09.2016Определение зависимости товарооборота за месяц применением уравнений множественной регрессии, которая оцениваются методом наименьших квадратов. Расчет товарооборота по методу Крамера. Экономическая интерпретация используемых параметров уравнения.
контрольная работа, добавлен 23.03.2020Построение модели для зависимой переменной, используя пошаговую множественную регрессию (метод исключения, метод включения). Анализ накладных расходов за счёт значимых факторов, расчет индекса корреляции и оценка качества полученного уравнения регрессии.
лабораторная работа, добавлен 27.11.2009Уравнение регрессии (оценка уравнения регрессии). Средняя ошибка аппроксимации. Значимость уравнения регрессии в целом и значимость параметров регрессионной модели. Коэффициенты эластичности и бета коэффициенты. Отбор информативных факторов в модель.
контрольная работа, добавлен 16.07.2019Выбор факторов, влияющих на производительность труда. Рассмотрение линейной зависимости. Использование критериев Фишера и Стьюдента. Расчет коэффициентов регрессии и стандартных отклонений. Проверка адекватности модели. Проверка теоретического уравнения.
контрольная работа, добавлен 13.05.2009Расчет параметров линейного уравнения регрессии. Особенность определения коэффициента парной корреляции. Статистическая значимость регрессионных и корреляционных величин и оценка их адекватности. Подсчет точечного и интервального прогноза прибыли.
контрольная работа, добавлен 13.06.2017Определение корреляционной зависимости между величинами. Характеристика значимости нелинейной корреляции для множественного уравнения парной регрессии. Оценка качества модели функции регрессии и её параметров. Изучение методов наименьших квадратов.
курсовая работа, добавлен 26.04.2013Разработка и численная реализация алгоритма построения ранговой оценки неизвестных параметров регрессии. Аналитическое вычисление асимптотической относительной эффективности рангового метода. Сравнение устойчивости ранговой оценки параметров модели.
контрольная работа, добавлен 14.07.2016Решение задач по нахождению параметров уравнения линейной регрессии и нахождение экономической интерпретации ее коэффициента. Вычисление остатков и оценка их дисперсии, проверка пара
контрольная работа, добавлен 23.01.2014Матричная запись множественной линейной модели регрессионного анализа. Решение задач регрессивного анализа. Пример решения нахождения модели множественной регрессии. Проверка статистической значимости коэффициентов уравнения множественной регрессии.
контрольная работа, добавлен 29.01.2012Расчет и сущность параметров уравнений линейной и нелинейной парной регрессии. Связь доходов от международных перевозок и длины дороги с помощью показателей корреляции и детерминации. Оценка аппроксимации качества уравнения регрессии доходов от перевозок.
курсовая работа, добавлен 09.06.2015