Звичайні диференціальні рівняння 1-го та 2-го порядку
Історичний обрис розвитку теорії диференціальних рівнянь. Лінійні однорідні та неоднорідні рівняння 2-го порядку з сталими коефіцієнтами. Основні види диференціальних рівнянь 1-го та 2-го порядку та методи їх розв’язування. Графічний метод інтегрування.
Подобные документы
Вироблення вмінь застосування властивостей рівносильності рівнянь. Приклади розв'язування рівнянь, що містять дроби (раціональні або звичайні). Завдання на виконання множення обох частин рівняння на одне й те саме число та позбавлення дробових чисел.
конспект урока, добавлен 26.09.2018- 52. Глобальна стійкість різницевих рівнянь та функціонально-диференціальних рівнянь з імпульсною дією
Дослідження глобальної стійкості єдиної нерухомої точки різницевих та функіонально-диференціальних рівнянь з імпульсною дією та з правими частинами, які задовольняють умову Йорка. Розв'язки систем функціонально-диференціальних рівнянь з імпульсною дією.
автореферат, добавлен 26.08.2015 Розробка методів відшукання розв’язків крайових задач. Суть простої модифікації формули Даламбера. Аналіз теорії диференціальних рівнянь у частинних похідних. Побудова наближених періодичних рішень завдань для квазілінійних гіперболічних тотожностей.
статья, добавлен 28.07.2016Конструктивне представлення розв'язків абстрактних задач для диференціальних рівнянь гіперболічного типу першого та другого порядків в гільбертовому просторі. Побудова і обґрунтування чисельно-аналітичних алгоритмів, знайдення апріорної оцінки точності.
автореферат, добавлен 25.02.2014Відокремлення коренів алгебраїчних та трансцендентних рівнянь. особливості графічного методу розв’язування рівнянь. Знаходження рішення способом пропорційних частин. Комбінований метод (метод дотичних і хорд), його специфіка. Приклади розв’язування задач.
курсовая работа, добавлен 18.12.2012Новий метод розв’язування кубічного алгебраїчного рівняння. Розрахунок рівнянь, розміщених на комплексній площині, що позначають вершини рівностороннього трикутника. Перетворення вигляду рівняння, якщо умова не виконується і всі корені рівняння різні.
лекция, добавлен 24.01.2014Оцінка ефективності явних обчислювальних схем числового розв’язку задачі Коші для звичайного диференціального рівняння. Рекомендації щодо ефективного застосування методу диференціально-тейлорівських перетворень для числового інтегрування рівнянь.
статья, добавлен 29.07.2016- 58. Розв’язність початкової задачі для позитивних систем лінійних функціонально-диференціальних рівнянь
Розв’язння задачі Коші для багатовимірних систем лінійних функціонально-диференціальних рівнянь загального вигляду. Монотонна залежність розв’язання початкової задачі від адитивних збурень заданого рівняння та початкових умов, ітераційні процеси.
автореферат, добавлен 29.07.2014 Прямі і наближені методи розв’язання систем лінійних алгебраїчних рівнянь. Метод Гауса. Чисельне розв’язання нелінійних алгебраїчних і трансцендентних рівнянь та їх систем. Наближене розв’язання крайової задачі для звичайних диференціальних рівнянь.
курс лекций, добавлен 10.04.2012Розробка підходу для дослідження асимптотичного поводження Р-розв’язків істотно нелінійних неавтономних звичайних диференціальних рівнянь. Вивчення теорем про асимптотику. Характеристика методик вчених І.Т. Кігурадзе, О.В. Костіна і В.М. Євтухова.
автореферат, добавлен 05.01.2014Знаходження екстремуму функції від багатьох змінних. Інтегральне числення. Використання поняття визначеного інтегралу в економіці. Диференціальні рівняння. Задача Коші. Застосування диференціальних рівнянь в економіці. Рівняння з розділеними змінними.
учебное пособие, добавлен 24.10.2023Умови збіжності матриць Гріна лінійних крайових задач для систем диференціальних рівнянь першого порядку по нормі простору Лебега. Аналіз неперервності за параметром розв’язків лінійних крайових задач для систем диференціальних рівнянь першого порядку.
автореферат, добавлен 27.08.2015Вивчення теми "Квадратні рівняння" у середній школі та її застосування. Означення та види квадратних рівнянь, способи їх розв’язування, застосування теореми Вієта. Розклад квадратного тричлена на лінійні множники. Методика вивчення квадратних рівнянь.
курсовая работа, добавлен 12.12.2018Поняття "наближене рівняння" та "степеневі ряди". Наближене обчислення значень функцій за допомогою рядів. Використання рядів для розв’язання рівнянь. Обчислення визначених інтегралів та інтегрування диференціальних рівнянь за допомогою рядів Фур’є.
курсовая работа, добавлен 23.09.2015Вивчення крайових задач для вироджених систем звичайних диференціальних рівнянь за припущення, що відповідна вироджена лінійна система диференціальних рівнянь зводиться до центральної канонічної форми. Отримання ефективних коефіцієнтних умов біфуркації.
автореферат, добавлен 20.07.2015Алгоритми розв’язування систем лінійних рівнянь з невідомими та параметрами. Використання квадратних рівнянь з параметрами при розв’язуванні фізичних задач. Алгебраїчні, ірраціональні, показникові, логарифмічні та тригонометричні рівняння з параметрами.
учебное пособие, добавлен 17.02.2022Оцінка ефективності використання диференціальних рівнянь при вирішенні задач математичної ідеалізації процесів і явищ, що досліджуються в небесній механіці. Загальні уявлення про асимптотичні методи розв’язків задач нелінійних інваріантних функцій.
автореферат, добавлен 06.07.2014Умови існування та єдиності розв'язку нелокальної крайової задачі для систем лінійних функціонально-диференціальних рівнянь загального вигляду. Визначення локалізації розв'язків у множині функцій з обмеженим ростом та дослідження питання про їх єдиність.
автореферат, добавлен 27.08.2015Оригінали і їхні зображення. Властивості перетворення Лапласа. Формула звертання Рімана-Мелліна. Операційний метод розв’язування лінійних диференціальних рівнянь з перемінними коефіцієнтами, рівнянь у частинних похідних, рівнянь у кінцевих різницях.
курсовая работа, добавлен 09.04.2014Розробка оптимальних чисельних методів наближеного розв’язування жорстко некоректних задач. Розв'язання інтегральних рівнянь Фредгольма II роду з коефіцієнтами соболєвського типу гладкості за допомогою використання комбінації тіхоновської регуляризації.
автореферат, добавлен 20.07.2015Чисельне інтегрування звичайних диференційних рівнянь явними і неявними методами Рунге-Кутта. Вплив значення кроку обчислень на точність і збіжність рішення. Визначення можливості застосування засобів стандартних пакетів для отримання результатів.
лабораторная работа, добавлен 08.05.2015Встановлення умов розв’язуваності крайових задач для лінійних та слабконелінійних інтегро-диференціальних рівнянь з параметрами та обмеженнями і розробка ефективних методів проекційно-ітеративного типу побудови їх розв’язків. Теорії інтегральних рівнянь.
автореферат, добавлен 20.07.2015Ознайомлення з алгебраїчними методами розв’язку нелінійних диференціальних рівнянь. Теоретично-групові та симетрійні властивості, що виникають при рішенні нелінійних еволюційних задач в прикладній математиці. Засоби інваріантно-групових розв’язків.
автореферат, добавлен 23.11.2013Встановлення зв'язку між стійким інваріантним многовидом детермінованої динамічної системи та періодичними розв'язками у системі що збурюється випадковими імпульсами. Дослідження систем диференціальних рівнянь з регулярними та сингулярними збуреннями.
автореферат, добавлен 25.06.2014Симетричні властивості рівнянь теорії проникання, що описує адіабатичний рух нев’язкої стисливої рідини. Знаходження їх точних розв’язків. Класифікація квазілінійних систем еволюційних рівнянь третього порядку інваріантних відносно алгебри Галілея.
автореферат, добавлен 29.07.2014