Матрицы и операции над ними

Общее понятие матрицы, ее разновидности. Определители n-го порядка и их основные свойства. Алгебраические дополнения и миноры. Способ получения обратной матрицы, ее транспонирование. Алгоритм нахождения ранга матрицы. Виды операций над матрицами.

Подобные документы

  • Определение термина "ранг матрицы". Применение элементарного преобразования и приведение матрицы к трапецеидальному виду. Совместимость систем линейных уравнений, описание теоремы Кронекера-Капелли. Решение систем линейных уравнений методом Гаусса.

    контрольная работа, добавлен 09.07.2015

  • Нахождение определителя матрицы. Решение систем матричным способом. Решение алгебраических дополнений. Решение системы уравнений методом Гаусса. Исследование совместности систем по теореме Кронекера-Капелли, определение их ранга, нахождение решения.

    контрольная работа, добавлен 20.12.2016

  • Определители матриц. Миноры и алгебраические дополнения. Решение линейных уравнений. Метод Гаусса. Линейная зависимость и независимость системы векторов. Размерность и базис линейного пространства. Расстояние от точки до плоскости. Поверхности вращения.

    шпаргалка, добавлен 25.03.2011

  • Решение линейного алгебраического уравнения методом Гаусса, Крамера и матричным способом. Получение из исходной матрицы путем замены ее элементов алгебраическими дополнениями. Определение матрицы квадратной системы по формуле Крамера и решение уравнения.

    задача, добавлен 05.09.2016

  • Линейные уравнения и операции над матрицами. Обратная матрица и матричные уравнения. Линейные пространства, ранг матрицы и его приложения. Действия с комплексными числами. Группы, подгруппы, порядки элементов. Многочлены от одной и нескольких переменных.

    курс лекций, добавлен 21.11.2011

  • Матрица как прямоугольная таблица, которая составлена из чисел. Общая характеристика основных свойств обратной матрицы, анализ способов нахождения. Рассмотрение проблем выбора начального приближения. Знакомство с особенностями метода Гаусса-Жордана.

    реферат, добавлен 20.05.2021

  • Матрица как математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля, которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы. Общие множители всех элементов матрицы.

    реферат, добавлен 02.02.2015

  • Упорядоченные множества элементов. Структура представления многомерных матриц. Преобразование старшинства индексов. Метод гиперплоскостей для построения выпуклой области множества неупорядоченных элементов. Метод сингулярного разложения матрицы.

    контрольная работа, добавлен 15.01.2018

  • Сведения об умножении матриц, характеристика его свойств. Умножение матриц произвольного формата, их разбиение. Ассоциативность умножения матриц произвольного формата. Матрицы как линейные операторы. Построение матрицы по заданной формуле отображения.

    курсовая работа, добавлен 02.03.2019

  • Действия со скалярными и векторными величинами. Уравнение прямой линии на плоскости и плоскости в пространстве. Изучение матриц и операции над ними, составление систем линейных уравнений. Понятие функции и предел числовой последовательности, производная.

    курс лекций, добавлен 06.11.2009

  • Ознакомление с особенностями определения, свойства и методологии нахождения степенного преобразования для заданной системы алгебраических и дифференциальных уравнений. Рассмотрение и анализ процесса степенного преобразования унимодулярной матрицы.

    статья, добавлен 26.10.2014

  • Рассмотрение инструментов, применяемых для решения задач линейной алгебры с помощью MathCad. Определение значения матричного выражения. Определение матричного выражения в буквенном виде и запись его значения. Умножение матрицы на единичную матрицу.

    практическая работа, добавлен 31.10.2019

  • Изложение методов обработки элементов матрицы, расположенных на главной диагонали, выше и ниже главной диагонали, на побочной диагонали, выше и ниже побочной диагонали; заполнения элементов квадратного массива; упорядочения элементов и строк матрицы.

    презентация, добавлен 07.05.2014

  • Описание алгоритма Ванга-Ландау для подсчета плотности состояний уровней энергии. Построение алгоритма Ванга-Ландау с матрицами перехода функций f=1/t и анализ погрешностей. Пример аналитического решения матрицы переходов для одномерной модели Изинга.

    дипломная работа, добавлен 30.08.2016

  • Сущность и основные методы решения системы линейных алгебраических уравнений. Понятие линейной зависимости, ее представление. Характеристика метода исключения Гаусса и полного исключения Жордана. Основные правила определения элементов обратной матрицы.

    лекция, добавлен 29.10.2013

  • Понятие математических матриц, источники их формирования и развития в науке. Основные элементы и их взаимодействие. Описание действий с таблицами: сложение, вычитание, умножение между собой и на число. Рассмотрение свойств транспортированных матриц.

    презентация, добавлен 23.12.2013

  • Главные концепции и содержание теории графов, ее место и значение в современной математической науке. Матрицы, ассоциированные с графами, принципы реализации различных операций с ними. Отличительные особенности и структура ациклических графов, их обходы.

    контрольная работа, добавлен 08.02.2015

  • Понятие функции от матрицы: определение, значение, основные свойства. Построение интерполяционного многочлена Лагранжа-Сильвестра. Спектральная теорема для простых матриц и ее следствие. Характеристика эрмитовых, квадратичных и неотрицательных матриц.

    контрольная работа, добавлен 31.10.2010

  • Ознакомление с выражением характеристического уравнения, главного диагонального минора матрицы Гурвица. Рассмотрение свойства годографа. Определение диапазона изменения (приращения) аргумента. Анализ отредактированных графиков годографов Михайлова.

    лекция, добавлен 22.09.2017

  • Аксиомы линейного пространства. Понятие вектора как элемента множества. Определение линейной комбинации векторов и ее выражение. Базис линейного пространства. Равенство ранга матрицы для независимых векторов. Пример решения линейной зависимости.

    лекция, добавлен 26.01.2014

  • Формирование матрицы А размера nxm посредством цикла for. Разработка математической модели. Математические операции с полученными выражениями. Формирование двух произвольных матриц А и В порядка m при помощи цикла for и генератора случайных чисел rnd.

    контрольная работа, добавлен 15.10.2013

  • Простые и итерационные методы вычисления систем уравнений. Нормы вектора и матрицы. Условия их согласованности. Коэффициентная устойчивость решения по правой части. Алгоритм и определение трудоемкости метода Гаусса. Операции умножения и деления.

    презентация, добавлен 30.10.2013

  • Формулировка и решение задачи об оптимальном размещении компонентов на печатной плате или отдельных элементов в корпусе устройства. Основные понятия теории графов. Использование алгоритма Форда-Бэллмана для решения задачи. Построение матрицы смежности.

    курсовая работа, добавлен 20.01.2016

  • Матричная форма записи алгебраических операций. Совместные и несовместные системы линейных уравнений. Решение задач матричным методом. Исследование однородной системы методом Гаусса. Вычисление определителя матрицы. Особенности линейных преобразований.

    контрольная работа, добавлен 31.01.2014

  • Задачи, приводящие к решению разрешающих уравнений, их применение. Решение разрешающих уравнений: метод определителей, обратной матрицы, градиента, разложения в ряд Тейлора, формулы приближенного дифференцирования. Аспекты разработки алгоритмов.

    статья, добавлен 13.06.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.