Развитие понятия функции в математике и в школьном курсе математики
Подходы к определению понятия "функция", графики функции. Изучение основных элементарных функций в школьном курсе математики: линейной, квадратичной, кубической, обратной пропорциональности, степенной, показательной, логарифмической и тригонометрической.
Подобные документы
Алгоритм построения графика линейной и квадратичной функции с модулем. Получение более широких знаний о модуле числа, различных способах решения уравнений, содержащих знак абсолютной величины. Формирование графических навыков в процессе изучения функций.
лекция, добавлен 08.03.2023Графики элементарных функций, их непрерывность. Классификация точек разрыва. Кратко о Maple. Сущность первого и второго замечательных пределов. Сравнение бесконечно малых функций. Асимптотические формулы. Правило Лопиталя. Разложение в ряд Тейлора.
учебное пособие, добавлен 11.10.2012Сущность и содержание понятия функций, их виды, графики. Использование функций для описания процессов, происходящих в технических устройствах и природных явлениях. Демонстрация связи работы технических приборов и явлений природы с функциональным анализом.
курсовая работа, добавлен 28.04.2023Особенности развития естествознания и математической науки. Определение и сущность функции в XVIII веке. Роль понятия функциональной зависимости в познании реального мира. Общее определение функции в XIX веке и новые шаги в дальнейшем развитии понятия.
реферат, добавлен 10.03.2012Противостояние логицизма и интуиционизма, формализма и теоретико-множественных оснований математики. Применяемые в математике аксиомы выбора, закон исключенного третьего, аксиомы сводимости, понятия теории множеств. Значение прикладной математики.
статья, добавлен 11.02.2021Определение понятия предела функции для любой бесконечно большой последовательности. Характеристика ограниченности функций и арифметических операций, при условии наличия пределов. Изучение свойств бесконечно малых и больших математических функций.
лекция, добавлен 29.09.2013Основные направления развития математики в XX веке: топология, риманова геометрия, теория вероятности. Новые области применения математики в связи с развитием компьютерных технологий. Использование сведений о развитии математики в начальной школе.
курсовая работа, добавлен 20.09.2018- 108. Алгебра матрицы
Рассмотрение понятия матрицы, её производных. Численные методы - раздел вычислительной математики, посвященный математическому описанию исследованию процессов численного решения задач линейной алгебры. Применение матрицы и ее алгебраические функции.
реферат, добавлен 25.05.2017 История появления понятия функции, формулировки ее определения с механической, геометрической и аналитической точек зрения. Роль функциональных зависимостей в познании реального мира. Виды функций и их свойства. Методические рекомендации к их изучению.
реферат, добавлен 28.09.2011Рассмотрение современных взглядов развития дифференциального уравнения и его значения в обучении. Перекрестный и сравнительный анализ влияния методик и различных факторов на развитие математики. Определение процесса определения производной функции.
статья, добавлен 14.12.2024Примеры решения типовых задач и задачи для самостоятельного решения. Область определения функции. Выяснение четности (нечетности) функции. Построение графика функции. Пределы функций, раскрытие неопределенности. Преображение графиков элементарных функций.
практическая работа, добавлен 20.12.2011Построение схематического графика показательной функции и определение ее основных свойств. Исследование математиками Н. Оресма и М. Штифелем дробных показателей степени и простых правил действий над степенями. Развитие теории логарифмов Дж. Непером.
презентация, добавлен 05.03.2012Основные способы задания множеств. Анализ рефлексивных, симметричных и транзитивных бинарных отношений. Характеристика исследования ориентированных графов. Главные законы, определяющие свойства логических операций. Изучение элементарных булевых функций.
презентация, добавлен 06.09.2017Формирование, развитие и взаимовлияние математики и философии Древней Греции. Милетская математическая школа, заложившая основы математики как доказательной науки. Роль математики в формировании элейской философии. Система философии математики Аристотеля.
реферат, добавлен 30.10.2010Изучение интегральных вычислений в курсе математического анализа. Определение риманового числа. Понятие непрерывной периодической функции. Анализ признаков сходимости ряда. Доказательство теорем о несобственном интеграле непрерывной периодической функции.
курсовая работа, добавлен 02.10.2021История возникновения науки арифметики, ее процесс развития. Открытие несоизмеримых отрезков греческими математиками из школы Пифагора. Проблематика определения понятия функции. Процесс изучения тригонометрических и логарифмических функций в школе.
курсовая работа, добавлен 29.10.2013Классическое понятие функциональной зависимости в математике, ограничения применимости понятия для адекватного моделирования реальности. Интеллектуальная система "Эйдос". Методы формирования редуцированных когнитивных функций и наименьших квадратов.
монография, добавлен 13.05.2017Понятие и сущность функции в математике, характеристика основной теоремы арифметики. Отличительные черты мультипликативной и аддитивной арифметической функции. Определение целой и дробной части числа, описание дзета-функция Римана и функции Чебышева.
контрольная работа, добавлен 04.11.2016- 119. Производная функция
Геометрический смысл производной. Зависимость между дифференцируемостью и непрерывностью функции. Таблица элементарных производных. Признаки постоянства, возрастания и убывания функций. Максимум и минимум функции. Признаки существования экстремума.
контрольная работа, добавлен 19.01.2013 Определение основных понятий непрерывности функции в точке. Расчет величин прироста аргумента. Арифметические действия элементарных функций. Понятие гиперболических функций и их формулы. Множество и его значение. Точка разрыва и теорема непрерывности.
лекция, добавлен 26.01.2014Метод гиперплоскостей для построения выпуклой области. Решение нелинейных уравнений на основе минимизации функций многих переменных. Сокращение интервала неопределенности методами золотого сечения, квадратичной аппроксимации и Давидона-Флетчера-Пауэлла.
реферат, добавлен 14.02.2011Характеристика применения дифференциального исчисления в экономике при помощи понятия эластичности. Определение понятия эластичности функции и его свойства. Свойства однородных функций. Использование формулы Эйлера в прикладных экономических расчетах.
курсовая работа, добавлен 17.03.2014- 123. Степенная функция
Определение степенной функции y = a(x в степени m), где а и m - постоянные величины. Ход урока: повторение свойств степеней, определение понятий. Построение графиков параболы и гиперболы. Решение уравнений и неравенств. Сравнительный анализ результатов.
презентация, добавлен 03.03.2012 Понятие и применение производной функции в математике. Описание теорем о дифференцируемых функциях. Применение производной к исследованию функций. Необходимый, достаточный признак существования ее экстремума. План исследования, построение графика функции.
презентация, добавлен 23.08.2016Определение сущности функции — одного из основных математических и общенаучных понятий. Изучение истории введения понятия функции через механическое и геометрическое представление. Анализ определения Дирихле, которое вызывало сомнения среди математиков.
доклад, добавлен 13.06.2022