Основные свойства множеств

Основы арифметических действий над натуральными числами. Операции декартового произведения множеств. Характеристика комплексных чисел и возможные операции над ними. Пересечение, объединение, дополнение, декартово произведение в курсе школьной математики.

Подобные документы

  • Основы теории множеств. Логические операции над высказываниями. Равносильные преобразования формул. Способы задания булевой функции. Метод карт Карно. Двоичное сложение и полином Жегалкина. Кванторные операции над одноместными и двуместными предикатами.

    методичка, добавлен 24.09.2019

  • Основы теории множеств, переключательных функций, комбинаторного анализа и теории графов. Диаграммы Эйлера, операции над множествами. Бинарные отношения и отображения. Свойства элементарных булевых функций. Основные понятия и определения комбинаторики.

    учебное пособие, добавлен 11.10.2014

  • Описание свойства транзитивности принадлежности для самопринадлежащих множеств. Доказательство теоремы о непротиворечивости теории множеств с самопринадлежностью. Алгебра скобок единого и многого. Отношение части и целого. Приложение к доказательству.

    статья, добавлен 26.04.2019

  • Скалярное произведение векторов: определение. Характеристика векторного произведения векторов, его свойства (антиперестановочность множителей, распределительности относительно сложения и пр.). Определение смешанного произведения векторов, примеры задач.

    лекция, добавлен 09.07.2015

  • Исторические аспекты становления комбинаторики и основные утверждения, касающиеся конечных множеств. Решение задач с помощью правил суммы и произведения, а также методом пересекающихся множеств, кругов Эйлера, размещением или перестановкой без повторений.

    реферат, добавлен 15.11.2010

  • Геометрический смысл и свойства псевдовектора, перпендикулярного плоскости, построенного по двум сомножителям в результате бинарной операции. Варианты вычислений векторного произведения. Свойства смешанного произведения трех математических объектов.

    презентация, добавлен 01.09.2015

  • Изучение комплексных чисел в рамках школьной математической программы. Описание правил сложения, вычитания и других действий. Вывод формул сокращенного умножения. Решение примеров с комплексными числами. Представление множества в виде кругов Эйлера.

    реферат, добавлен 02.05.2019

  • Основные понятия и обозначения, связанные с множествами и операциями над ними. Формула мощности объединения нескольких множеств. Теорема Кантора-Бернштейна и ее доказательства равномощности. Бинарное отношение эквивалентности и порядка. Теорема Цермело.

    курс лекций, добавлен 28.12.2013

  • Решение проблемы о структуре окрестности притягивающих, слабо притягивающих и неасимптотически устойчивых инвариантных множеств. Классификация компактных и замкнутых инвариантных множеств. Метод знакопостоянных функций Ляпунова для динамических систем.

    автореферат, добавлен 19.08.2018

  • Понятие и направления исследования множеств, их классификация и разновидности, свойства и отличия. Мощность множества и основные критерии ее оценки. Метрические пространства: внутренность, внешность и граница. Непрерывные отображения. Аксиомы счетности.

    курс лекций, добавлен 28.03.2012

  • Множество как основное понятие математики: пересечение, разность, разбиение и произведение. Простые и составные высказывания. Структура и виды теоремы. Сложение и вычитание, умножение и деление в количественной теории целых неотрицательных чисел.

    шпаргалка, добавлен 19.01.2011

  • Алгебраические операции над комплексными числами и комплексное сопряжение. Показательная функция комплексного аргумента и применение формулы Эйлера. Геометрическая интерпретация комплексных чисел. Разложение многочлена с действительными коэффициентами.

    курс лекций, добавлен 23.10.2013

  • Понятие комплексного числа, история развития. Свойства комплексных чисел, действия с ними: сложение, вычитание, возведение в степень, извлечение корня, графическое изображение, перевод в тригонометрическую форму. Применение комплексных чисел в геометрии.

    реферат, добавлен 02.04.2022

  • Определение понятия линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Характеристика неравенства Коши-Буняковского. Изучение связных, несвязных, ограниченных, неограниченных множеств. Анализ компактных множеств.

    курсовая работа, добавлен 21.09.2017

  • Последовательность и отличия арифметических действий с числами в различных системах счисления: двоичной, десятичной и шестнадцатеричной. Примеры сложения, вычитания, умножения и деления на основе переходов между разрядными слагаемыми многозначных чисел.

    реферат, добавлен 01.02.2014

  • Рассмотрение на евклидовой плоскости системы ортонормированных координат. Операции над комплексными числами. Теория стереографической проекции сферы на плоскость. Теорема интегрирования абелевых дифференциалов. Косы как деформирующиеся наборы точек.

    учебное пособие, добавлен 28.12.2013

  • Современные рассуждения, демонстрирующие противоречивость наивной теории множеств. Предложенный Б. Расселом "парадокс Тристрама Шенди". Нетривиальные следствия аксиомы выбора. Рассмотрение рядов квадратов натуральных чисел, степеней двойки, факториалов.

    статья, добавлен 15.02.2019

  • Множества: операции, свойства, уравнения, декартово произведения. Способы описания бинарного отношения. Эквивалентность, понятия комбинаторики. Графы: определения, расширения модели, оптимизационные задачи. Алгебры, группы, изоморфизмы и гомоморфизмы.

    учебное пособие, добавлен 18.01.2015

  • Основные топологические понятия; аксиомы топологии и примеры некоторых соотношений в топологических пространствах. Булева алгебра и регулярные замкнутые множества: булево объединение и булево пересечение произвольного семейства элементов булевой алгебры.

    курсовая работа, добавлен 07.07.2012

  • История возникновения комплексных чисел, их общая характеристика. Действия над комплексными числами в алгебраической форме. Геометрическая интерпретация комплексного числа, его тригонометрическая, показательная форма. Применение комплексных чисел.

    контрольная работа, добавлен 30.01.2010

  • Определение математических понятий: множество, история теории множеств, их сравнение и операции над ними; функция и способы ее задания, группа как непустое множество, конъюнктивная нормальная форма, формальная логика и нормальный алгоритм Маркова.

    контрольная работа, добавлен 19.06.2011

  • Понятие "комплексные числа": история их возникновения и роль в процессе развития математики. Действия над двумерными числами и их значение для физики и техники. Процесс расширения понятий этой категории математики от натуральных к действительным.

    реферат, добавлен 07.06.2013

  • Операции над множествами и их свойства. Система комплексных чисел. Многочлены с действительными коэффициентами и алгоритм Эвклида. Решение систем линейных уравнений матричным способом. Свойства аффинной и прямоугольной декартовой системы координат.

    курс лекций, добавлен 17.01.2014

  • Основные свойства множеств с самоприрадлежностью. Бесконечно малая величина в математике. Множество, содержащее все множества, задаваемое непредикативной схемой свёртывания. Использование бесконечных, недостижимых последователей в математических теориях.

    статья, добавлен 26.04.2019

  • История возникновения комплексных чисел, их утверждение в математике. Геометрическое изображение комплексных чисел, их тригонометрическая форма. Действия с числами: сложение, вычитание, умножение и деление. Решение уравнений с комплексными переменными.

    реферат, добавлен 29.08.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.