Теория графов
Диаграмма Эйлера-Венна для множества. Системы счисления с креном. Построение Эйлеровой цепи в неориентированном графе. Определение минимального остовного дерева в неориентированном нагруженном графе. Понятие булевой функции и методы ее представления.
Подобные документы
- 51. Теория множеств
Определение понятия множеств Г. Кантора, их примеры и обозначения. Операции над множествами: пересечение, объединение, разность и дополнение, их наглядное представление на диаграмме Эйлера-Венна. Равенство, тождественность и эквивалентность множеств.
презентация, добавлен 10.05.2016 Перевод целого числа из двоичной (восьмеричной) системы в десятичную. Арифметические действия в заданной системе счисления. Перевод чисел из десятичной системы в системы с основаниями 2, 8 и 16. Алгоритм определения минимального из десяти заданных чисел.
реферат, добавлен 08.03.2010Рассматривается задача, в которой матрица весовых коэффициентов дуг не является симметричной. Исследуются основные математические модели, включая модель с минимальным числом линейных ограничений. Рассматривается нахождение минимального остовного дерева.
статья, добавлен 12.05.2018Понятие зависимости между простыми числами в работах Лежандра и Гаусса. Методы суммирования упорядоченных множеств. Асимптотический анализ данной функции в трудах русского математика П. Чебышева. Ложности функции бесконечного множества по Литлвуду.
статья, добавлен 21.05.2016Особенность нахождения отношения эквивалентности на множестве А. Построение таблиц истинности для высказываний. Изучение замыкания над множеством булевой функции. Проведение исследования класса линейных функций. Нахождение максимального потока в сети.
курсовая работа, добавлен 05.12.2019Использование теории графов для представления отношений между элементами сложных структур различной природы. Определение связности темпорального графа. Применение метода Мальгранжа для нахождения максимальных компонент сильной связности четких графов.
статья, добавлен 19.01.2018Десятичная, двоичная, восьмеричная и шестнадцатеричная системы счисления. Основные правила перевода чисел из одной системы счисления в другую. Перевод дробной части. Определение числа целых и дробных значений. Выполнение арифметических действий.
практическая работа, добавлен 22.10.2014Понятие и история становления систем счисления как определенных способов представления чисел и соответствующих правил действия над ними. Их типы и отличительные особенности: позиционные и непозиционные. Основные примеры и значение каждой их систем.
презентация, добавлен 25.10.2018- 59. Планарные графы
Определение планарных и плоских графов, простейшие свойства. Жордановая кривая. Формула Эйлера. Плоская триангуляция. Критерий планарности. Теорема Л.С. Понтрягина - К. Куратовского. Алгоритм укладки графа на плоскости. Проверка графов на планарность.
презентация, добавлен 21.09.2017 Теория частичных алгебраических действий. Частично упорядоченные множества. Частичные группоиды и их свойства. Примеры полурешеток. Доказательство ассоциативности. Понятие упорядоченного множества и порядкового типа. Алгебраическая теория полугрупп.
курсовая работа, добавлен 24.03.2012Проведение исследования основных операций булевой алгебры. Получение практических навыков по преобразованию и упрощению булевых выражений методами непосредственных преобразований и карт Карно. Построение выражений в форме канонической суммы минтермов.
контрольная работа, добавлен 28.01.2020Использование дерева решения, которое позволяет представить структуру рассматриваемых альтернатив и специфику воздействий связей внешней среды в виде графа, который не имеет циклов. Исследование набора вершин и дуг, а также циклов в данном графе.
статья, добавлен 17.08.2018Статистическое определение вероятности случайного события и меры статистической закономерности появления события. Применение графической диаграммы Эйлера из теории множеств. Определение свойства относительной частоты и пространства элементарных событий.
лекция, добавлен 26.09.2017История возникновения систем счисления как символического метода записи чисел и представления чисел с помощью письменных знаков. Виды систем счисления: позиционные, смешанные, непозиционные. Отражение алгебраической и арифметической структуры чисел.
доклад, добавлен 09.06.2018Множества, операции над ними. Соответствия и функции. Элементы общей алгебры. Различные виды алгебраических структур. Элементы математической логики. Логические функции. Булевы алгебры и теория множеств. Язык логики предикатов. Классы графов и их частей.
курс лекций, добавлен 07.04.2013- 66. Теория графов
История возникновения теории графов. Основные ее определения и теоремы. Применение положений данной теории в школьном курсе математики, в различных областях науки и техники. Объяснение теоретического материала на примере задач по естествознанию.
реферат, добавлен 01.03.2018 Перевод чисел из одних систем счисления в другие. Виды систем счисления. Особенности позиционных и непозиционных (римских) систем счисления. Основание системы счисления. Перевод чисел с помощью персонального компьютера, занесение результата в таблицу.
практическая работа, добавлен 18.12.2015Понятие и специфические особенности гамильтоновых циклов, их характеристики. Условия существования гамильтонова цикла. Задачи, связанные с поиском гамильтоновых циклов, методы их построения в графе. Алгебраический метод построения гамильтоновых циклов.
контрольная работа, добавлен 23.04.2011- 69. Теория графов
Определение понятия и сущности графов. Изучение проблемы построения неографа с заданным списком вершин и предписанными теоретическими свойствами. Описание реализации алгоритмов построения связных графов и деревьев в пакете символьной математики Maple.
контрольная работа, добавлен 18.12.2015 Запись чисел в римской системе счисления, её недостатки. Сущность и предназначение десятичной системы счисления, использование индийской нумерации. Характеристика работы вычислительных машин. Соответствие чисел, записанных в различных системах счисления.
реферат, добавлен 22.11.2015Решение задач по теории вероятности с помощью диаграмм Эйлера-Венна. Геометрическая интерпретация бинарных отношений. Отношение следствий пары высказываний. Анализ истинности суждений построением таблицы, преобразованием формулы, методом "от противного".
контрольная работа, добавлен 27.12.2014- 72. Теория графов
Основные понятия теории графов. Алгоритм построения эйлерового пути. Теория графов как область дискретной математики, особенностью которой является геометрический подход к изучению объектов. Задача коммивояжера как одна из задач теории комбинаторики.
реферат, добавлен 18.03.2010 Аксиоматическое построение множества натуральных чисел. Отношение делимости и его свойства. Полная и приведенная системы вычетов, теорема Эйлера и Ферма. Тригонометрическая форма записи комплексного числа. Действия над ними в алгебраической форме.
учебное пособие, добавлен 19.01.2015- 74. Теория графов
Сущность теории графов – как области дискретной математики, особенностью которой является геометрический подход к изучению объектов. Основные термины и теоремы теории графов, способы и методы их задания: геометрический, матрица смежности и инцидентности.
контрольная работа, добавлен 03.04.2013 Изучение функций, заданных на множестве графов и принимающих значения из некоторого множества чисел. Определение числа компонент связности графа. Правила раскраски графа и карт. Проблема четырех красок. Нахождение множеств внутренней устойчивости.
реферат, добавлен 13.11.2015