Теория графов

Диаграмма Эйлера-Венна для множества. Системы счисления с креном. Построение Эйлеровой цепи в неориентированном графе. Определение минимального остовного дерева в неориентированном нагруженном графе. Понятие булевой функции и методы ее представления.

Подобные документы

  • Определение понятия множеств Г. Кантора, их примеры и обозначения. Операции над множествами: пересечение, объединение, разность и дополнение, их наглядное представление на диаграмме Эйлера-Венна. Равенство, тождественность и эквивалентность множеств.

    презентация, добавлен 10.05.2016

  • Перевод целого числа из двоичной (восьмеричной) системы в десятичную. Арифметические действия в заданной системе счисления. Перевод чисел из десятичной системы в системы с основаниями 2, 8 и 16. Алгоритм определения минимального из десяти заданных чисел.

    реферат, добавлен 08.03.2010

  • Рассматривается задача, в которой матрица весовых коэффициентов дуг не является симметричной. Исследуются основные математические модели, включая модель с минимальным числом линейных ограничений. Рассматривается нахождение минимального остовного дерева.

    статья, добавлен 12.05.2018

  • Понятие зависимости между простыми числами в работах Лежандра и Гаусса. Методы суммирования упорядоченных множеств. Асимптотический анализ данной функции в трудах русского математика П. Чебышева. Ложности функции бесконечного множества по Литлвуду.

    статья, добавлен 21.05.2016

  • Особенность нахождения отношения эквивалентности на множестве А. Построение таблиц истинности для высказываний. Изучение замыкания над множеством булевой функции. Проведение исследования класса линейных функций. Нахождение максимального потока в сети.

    курсовая работа, добавлен 05.12.2019

  • Использование теории графов для представления отношений между элементами сложных структур различной природы. Определение связности темпорального графа. Применение метода Мальгранжа для нахождения максимальных компонент сильной связности четких графов.

    статья, добавлен 19.01.2018

  • Десятичная, двоичная, восьмеричная и шестнадцатеричная системы счисления. Основные правила перевода чисел из одной системы счисления в другую. Перевод дробной части. Определение числа целых и дробных значений. Выполнение арифметических действий.

    практическая работа, добавлен 22.10.2014

  • Понятие и история становления систем счисления как определенных способов представления чисел и соответствующих правил действия над ними. Их типы и отличительные особенности: позиционные и непозиционные. Основные примеры и значение каждой их систем.

    презентация, добавлен 25.10.2018

  • Определение планарных и плоских графов, простейшие свойства. Жордановая кривая. Формула Эйлера. Плоская триангуляция. Критерий планарности. Теорема Л.С. Понтрягина - К. Куратовского. Алгоритм укладки графа на плоскости. Проверка графов на планарность.

    презентация, добавлен 21.09.2017

  • Теория частичных алгебраических действий. Частично упорядоченные множества. Частичные группоиды и их свойства. Примеры полурешеток. Доказательство ассоциативности. Понятие упорядоченного множества и порядкового типа. Алгебраическая теория полугрупп.

    курсовая работа, добавлен 24.03.2012

  • Проведение исследования основных операций булевой алгебры. Получение практических навыков по преобразованию и упрощению булевых выражений методами непосредственных преобразований и карт Карно. Построение выражений в форме канонической суммы минтермов.

    контрольная работа, добавлен 28.01.2020

  • Использование дерева решения, которое позволяет представить структуру рассматриваемых альтернатив и специфику воздействий связей внешней среды в виде графа, который не имеет циклов. Исследование набора вершин и дуг, а также циклов в данном графе.

    статья, добавлен 17.08.2018

  • Статистическое определение вероятности случайного события и меры статистической закономерности появления события. Применение графической диаграммы Эйлера из теории множеств. Определение свойства относительной частоты и пространства элементарных событий.

    лекция, добавлен 26.09.2017

  • История возникновения систем счисления как символического метода записи чисел и представления чисел с помощью письменных знаков. Виды систем счисления: позиционные, смешанные, непозиционные. Отражение алгебраической и арифметической структуры чисел.

    доклад, добавлен 09.06.2018

  • Множества, операции над ними. Соответствия и функции. Элементы общей алгебры. Различные виды алгебраических структур. Элементы математической логики. Логические функции. Булевы алгебры и теория множеств. Язык логики предикатов. Классы графов и их частей.

    курс лекций, добавлен 07.04.2013

  • История возникновения теории графов. Основные ее определения и теоремы. Применение положений данной теории в школьном курсе математики, в различных областях науки и техники. Объяснение теоретического материала на примере задач по естествознанию.

    реферат, добавлен 01.03.2018

  • Перевод чисел из одних систем счисления в другие. Виды систем счисления. Особенности позиционных и непозиционных (римских) систем счисления. Основание системы счисления. Перевод чисел с помощью персонального компьютера, занесение результата в таблицу.

    практическая работа, добавлен 18.12.2015

  • Понятие и специфические особенности гамильтоновых циклов, их характеристики. Условия существования гамильтонова цикла. Задачи, связанные с поиском гамильтоновых циклов, методы их построения в графе. Алгебраический метод построения гамильтоновых циклов.

    контрольная работа, добавлен 23.04.2011

  • Определение понятия и сущности графов. Изучение проблемы построения неографа с заданным списком вершин и предписанными теоретическими свойствами. Описание реализации алгоритмов построения связных графов и деревьев в пакете символьной математики Maple.

    контрольная работа, добавлен 18.12.2015

  • Запись чисел в римской системе счисления, её недостатки. Сущность и предназначение десятичной системы счисления, использование индийской нумерации. Характеристика работы вычислительных машин. Соответствие чисел, записанных в различных системах счисления.

    реферат, добавлен 22.11.2015

  • Решение задач по теории вероятности с помощью диаграмм Эйлера-Венна. Геометрическая интерпретация бинарных отношений. Отношение следствий пары высказываний. Анализ истинности суждений построением таблицы, преобразованием формулы, методом "от противного".

    контрольная работа, добавлен 27.12.2014

  • Основные понятия теории графов. Алгоритм построения эйлерового пути. Теория графов как область дискретной математики, особенностью которой является геометрический подход к изучению объектов. Задача коммивояжера как одна из задач теории комбинаторики.

    реферат, добавлен 18.03.2010

  • Аксиоматическое построение множества натуральных чисел. Отношение делимости и его свойства. Полная и приведенная системы вычетов, теорема Эйлера и Ферма. Тригонометрическая форма записи комплексного числа. Действия над ними в алгебраической форме.

    учебное пособие, добавлен 19.01.2015

  • Сущность теории графов – как области дискретной математики, особенностью которой является геометрический подход к изучению объектов. Основные термины и теоремы теории графов, способы и методы их задания: геометрический, матрица смежности и инцидентности.

    контрольная работа, добавлен 03.04.2013

  • Изучение функций, заданных на множестве графов и принимающих значения из некоторого множества чисел. Определение числа компонент связности графа. Правила раскраски графа и карт. Проблема четырех красок. Нахождение множеств внутренней устойчивости.

    реферат, добавлен 13.11.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.