Первый замечательный предел

Предел отношения синуса к его аргументу, который равен единице в случае, когда аргумент стремится к нулю. Применение первого замечательного предела на практике. Круг радиуса R с центром в точке О. Расчет площадей треугольников. Преобразование синуса.

Подобные документы

  • Непрерывность функции в точке. Основные характеристики функций, непрерывных в точке. Понятие непрерывности функции на отрезке. Точки разрыва функции и их классификация. Точка разрыва первого рода, точка устранимого разрыва и точка разрыва второго рода.

    реферат, добавлен 03.08.2010

  • Возникновение дифференциальной геометрии. Доказательство теорем о пределах. Исследование функции на экстремумы, свойства непрерывных функций и производные. Теоремы о дифференцируемых функциях. Биографии ученых, внёсших вклад в развитие дифференциалов.

    курсовая работа, добавлен 11.02.2010

  • Теорема о непрерывности производных недифференцируемых функций. Определение координат в окрестности точки. Частные приращения по переменной и образованной от существующих пределов. Понятие дифференцируемости и производной сложной формулы двух аргументов.

    лекция, добавлен 26.01.2014

  • Определение числовой последовательности. Связь натурального и десятичного логарифмов. Предел функции при стремлении аргумента к бесконечности. Свойства и сравнение бесконечно малых функций. Тригонометрическая форма числа. Действия с комплексными числами.

    контрольная работа, добавлен 15.01.2011

  • Виды матриц, используемых в математике для компактной записи систем алгебраических или дифференциальных уравнений. История происхождения и свойства магического квадрата. Применение массивов в технике и программировании. Прогрессивные матрицы Равена.

    реферат, добавлен 21.03.2022

  • Сущность основного условия для достижения функцией локального максимума в точке. Исследование достаточных критериев локального экстремума. Применение формулы Тейлора для доказательства теоремы о существовании минимума функции в стационарной точке.

    доклад, добавлен 20.05.2014

  • Решение систем линейных уравнений методом Гаусса. Линейные операции над векторами и разложение вектора по ортам координатных осей. Геометрический и физический смысл определенного интеграла. Предел и непрерывность функции комплексного переменного.

    курс лекций, добавлен 18.04.2016

  • Возникновение и развитие математики как научной дисциплины. Основные понятия дифференциации функций: предел, производная, непрерывность. Исчисление определенного и неопределенного интегралов. Нахождение промежутков выпуклости и точек перегиба функции.

    учебное пособие, добавлен 28.12.2013

  • Понятие и общая характеристика, свойства и особенности матриц, определителей, систем линейных алгебраических уравнений и методы решения. Линейное пространство и преобразования в нем. Основы аналитической геометрии. Функции и предел их последовательности.

    учебное пособие, добавлен 13.03.2011

  • Геометрический смысл модуля числа - расстояния от начала отсчёта до точки, которой соответствует это число на координатной прямой. Бесконечно малая функция и ее свойства. Основные теоремы о пределах, их единственность, арифметические операции над ними.

    реферат, добавлен 29.11.2016

  • Действия над векторами. Декартова прямоугольная система координат, понятие базиса. Уравнение плоскости в пространстве. Нахождение начальной точки и направляющего вектора прямой. Кривые линии II порядка: парабола и гипербола. Основные теоремы о пределах.

    шпаргалка, добавлен 14.01.2010

  • Преобразование линии, фигуры, плоскости. Определение и виды движения. Особые свойства переноса. Понятие центральной и осевой симметрии. Доказательство признаков равенства треугольников. Использование поворота отрезков при решении геометрических задач.

    реферат, добавлен 03.10.2019

  • Элементы дискретной математики. Сущность математической логики. Операции над множествами. Правила, формулы дифференцирования. Неопределенный интеграл, методы интегрирования. Основы теории вероятностей и математической статистики. Понятие и предел функции.

    учебное пособие, добавлен 03.07.2013

  • Исследование условия, при котором функция является бесконечно большой величиной для любого числа. Изучение свойств ББВ. Произведение ББВ на функцию, предел которой отличен от нуля. Колебание значений при переходе от положительных к отрицательным.

    презентация, добавлен 21.09.2013

  • Понятие линейного, нормированного и предгильбертового пространства. Последовательности точек метрического пространства, предел и непрерывность его отображений. Необходимое условие компактности множеств. Принцип Баноха сжимающих отображений, их свойства.

    лекция, добавлен 08.11.2015

  • Тригонометрическая форма записи комплексных чисел, предел их последовательности. Понятие функции комплексного переменного, его дифференцируемость. Геометрический смысл определения производной функции. Гиперболические функции вещественного переменного.

    курс лекций, добавлен 15.09.2017

  • Одновременное варьирование всех факторов по определенному правилу и представление математической модели в виде линейного полинома как особенность факторного эксперимента первого порядка. Методика оценки однородности дисперсии по критерию Кохрена.

    лабораторная работа, добавлен 28.09.2016

  • Определение топологического пространства, классическое определение непрерывности числовой функции. Отображения для любой пары произвольных множеств. Окрестностью точки в топологическом пространстве, предел последовательности точек, топология Зарисского.

    контрольная работа, добавлен 10.11.2010

  • Основные теоремы о пределах, признаки их существования, связь с бесконечно малой функцией. Теорема об алгебраической сумме конечного числа БМФ. Методы вычисления пределов выражений, содержащих тригонометрические функции, и числовых последовательностей.

    реферат, добавлен 22.09.2013

  • Определение основных понятий непрерывности функции в точке. Расчет величин прироста аргумента. Арифметические действия элементарных функций. Понятие гиперболических функций и их формулы. Множество и его значение. Точка разрыва и теорема непрерывности.

    лекция, добавлен 26.01.2014

  • Особенности толкования понятий множества и функции в математическом анализе. Определение предела числовой последовательности. Сущность и свойства сходящихся последовательностей. Определение непрерывности функции в точке. Функции, непрерывные на сегменте.

    учебное пособие, добавлен 13.09.2015

  • Интегральное и дифференциальное исчисления функций одной переменной. Числовые множества. Предел и непрерывность функций. Производная и дифференциал. Кривизна и кручение кривой. Интегрирование рациональных дробей. Критерий Коши собственного интеграла.

    учебное пособие, добавлен 31.03.2016

  • Операции над множествами. Свойства функции одной переменной. Теоремы о пределах. Производная функции. Уравнение касательной. Дифференциал функции; правило Лопиталя; комплексные числа; ряды. Интегрирование; дифференциальные уравнения; двойной интеграл.

    курс лекций, добавлен 07.03.2015

  • Определение объема тела, ограниченного поверхностями с помощью тройного интеграла. Круг в системе координат. Рассмотрение особенностей размещения поверхностей в пространстве. Правила вычисления двойного интеграла. Расчет объема параболического цилиндра.

    контрольная работа, добавлен 29.11.2015

  • Предел последовательности и функции, бесконечно малые и большие величины, а также их сравнение. Дифференциальное и интегральное исчисление функции одной переменной. Геометрические приложения определенного интеграла. Производная и дифференциал функции.

    учебное пособие, добавлен 20.08.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.